×

zbMATH — the first resource for mathematics

Yangian symmetry of integrable quantum chains with long-range interactions and a new description of states in conformal field theory. (English) Zbl 0968.82510
Summary: The \(\text{SU}(n)\) quantum chains with inverse-square exchange exhibit a novel form of Yangian symmetry compatible with periodic boundary conditions, allowing states to be countable. We characterize the “supermultiplets” of the spectrum in terms of generalized “occupation numbers”. We embed the model in the \(k=1\) \(\text{SU}(n)\) Kac-Moody algebra and obtain a new classification of the states of conformal field theory, adapted to particlelike elementary excitations obeying fractional statistics.

MSC:
82B23 Exactly solvable models; Bethe ansatz
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] F. D. M. Haldane, Phys. Rev. Lett. 67 pp 937– (1991) · Zbl 0990.81534 · doi:10.1103/PhysRevLett.67.937
[2] F. D. M. Haldane, Phys. Rev. Lett. 60 pp 635– (1988) · doi:10.1103/PhysRevLett.60.635
[3] B. S. Shastry, Phys. Rev. Lett. 60 pp 635– (1988) · doi:10.1103/PhysRevLett.60.639
[4] V. G. Drinfel’d, Sov. Math. Dokl. 32 pp 254– (1985)
[5] D. Bernard, Commun. Math. 137 pp 191– (1991) · Zbl 0736.17030 · doi:10.1007/BF02099123
[6] D. Bernard, Nucl. Phys. B365 pp 98– (1991) · doi:10.1016/0550-3213(91)90608-Z
[7] Z. N. C. Ha, Bull. Am. Phys. Soc. 37 pp 646– (1992)
[8] N. Kawakami, Phys. Rev. B 46 pp 1005– (1992) · doi:10.1103/PhysRevB.46.1005
[9] H. Bethe, Z. Phys. 71 pp 205– (1931) · doi:10.1007/BF01341708
[10] B. Sutherland, Phys. Rev. B 12 pp 3795– (1975) · doi:10.1103/PhysRevB.12.3795
[11] V. I. Inozemtsev, J. Stat. Phys. 59 pp 1143– (1990) · Zbl 0712.58034 · doi:10.1007/BF01334745
[12] V. Chari, J. Reine Angew. Math. 417 pp 87– (1991)
[13] L. A. Takhtadzhan, Russian Math. Surveys 34 pp No– (1979) · doi:10.1070/RM1979v034n05ABEH003909
[14] F. D. M. Haldane, Phys. Rev. Lett. 66 pp 1529– (1991) · Zbl 0968.82507 · doi:10.1103/PhysRevLett.66.1529
[15] F. Gebhard, Phys. Rev. Lett. 59 pp 1472– (1987) · doi:10.1103/PhysRevLett.59.1472
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.