zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Sliding mode observers for fault detection and isolation. (English) Zbl 0968.93502

93B12Variable structure systems
90B25Reliability, availability, maintenance, inspection, etc. (optimization)
Full Text: DOI
[1] Chen, J.; Patton, R.; Zhang, H.: Design of unknown input observers and robust fault detection filters. International journal of control 63, 85-105 (1996) · Zbl 0844.93020
[2] Dalton, T., Patton, R., & Chen, J. (1996). An application of eigenstructure assignment to robust fault residual design for FDI. In Proceedings of the International Conference on Control (pp. 78-83).
[3] Ding, X.; Frank, P.: Fault detection via factorization approach. Systems and control letters 14, 431-436 (1990) · Zbl 0703.93068
[4] Ding, X.; Guo, L.; Frank, P.: Parametrization of linear observers and its application to observer design. IEEE transactions on automatic control 39, 1648-1652 (1994) · Zbl 0800.93184
[5] Duan, G., Patton, R., Chen, J., & Chen, Z. (1997). A parametric approach for fault detection in linear systems with unknown disturbances. In Proceedings of the IFAC Symposium, Safeprocess’ 97 (pp. 318-322). Hull.
[6] Edwards, C.; Spurgeon, S.: On the development of discontinuous observers. International journal of control 59, 1211-1229 (1994) · Zbl 0810.93009
[7] Edwards, C.; Spurgeon, S.: Sliding mode stabilisation of uncertain systems using only output information. International journal of control 62, 1129-1144 (1995) · Zbl 0849.93012
[8] Frank, P.: Fault diagnosis in dynamic systems using analytical and knowledge based redundancy - a survey and some new results. Automatica 26, 459-474 (1990) · Zbl 0713.93052
[9] Frank, P.: Enhancement of robustness in observer based fault detection. International journal of control 59, 955-981 (1994) · Zbl 0813.93003
[10] Ge, W.; Fang, Z.: Detection of faulty components via robust observation. International journal of control 47, 581-599 (1988) · Zbl 0642.93010
[11] Gertler, J.: Survey of model-based failure detection and isolation in complex plant. IEEE control systems magazine 3, 3-11 (1988)
[12] Gertler, J. (1991). Analytical redundancy methods in fault detection and isolation. In Proceeedings of the IFAC/IMACS Symposium, Safeprocess’ 91, Baden-Baden (pp. 9-21).
[13] Hermans, F., & Zarrop, M. (1996). Sliding mode observers for robust sensor monitoring. In Proceedings of the 13th IFAC World Congress (pp. 211-216).
[14] Hou, M.; Müller, P.: Design of observers for linear systems with unknown inputs. IEEE transactions on automatic control 37, 871-875 (1992) · Zbl 0775.93021
[15] Hou, M.; Müller, P.: Fault detection and solution observers. International journal of control 60, 827-846 (1994) · Zbl 0825.93085
[16] Massoumnia, M. (1986). A Geometric approach to Failure Detection and Identification in linear systems. Ph.D. thesis, Cambridge MA: MIT. · Zbl 0599.93017
[17] Patton, R. (1988). Robust fault detection using eigenstructure assignment. In Proceedings of the 12th IMACS World Congress on Mathematical Modelling and Scientific Computation (pp. 431-434). Paris.
[18] Patton, R.: Robustness in model-based fault diagnosis: the 1997 situation. IFAC annual reviews 21, 101-121 (1997)
[19] Patton, R., & Chen, J. (1991). Robust fault detection using eigenstructure assignment: a tutorial consideration and some new results. In Proceedings of the 30th IEEE Conference on Decision and Control (pp. 2242-2247). Brighton.
[20] Patton, R.; Chen, J.: Robust fault detection of jet engine sensor by using eigenstructure assignment. Journal of guidance control and dynamics 15, 1491-1496 (1992)
[21] Patton, R.; Chen, J.: A review of parity space approaches to fault diagnosis for aerospace systems. Journal of guidance control and dynamics 17, 278-285 (1994) · Zbl 0800.93050
[22] Patton, R.; Chen, J.: Observer-based fault detection and isolation: robustness and applications. IFAC journal of control engineering practice 5, 671-682 (1997)
[23] Patton, R., & Hou, M. (1998). Fault diagnosis in dynamic systems using a robust output zeroing method. In Proceedings of the IFAC workshop: On-line fault detection and supervision in the chemical process industries, Lyon, France.
[24] Patton, R., & Willcox, S. (1987). Fault diagnosis in dynamic systems using a robust output zeroing method. In Tzafestas, Singh & Schmidt, System Fault Diagnosis, Reliability and Related Knowledge-based Approaches. Dordrecht: Reidel Press.
[25] Patton, R., Chen, J., & Zhang, H. (1992). Modelling of uncertainties for robust fault diagnosis. In Proceedings of the 31st IEEE Conference on Decision and Control (pp. 921-926). Tucson, AR.
[26] Patton, R., Frank, P., & Clark, R. (1989). Fault diagnosis in dynamic systems: theory and application. New York: Prentice Hall.
[27] Patton, R., Frank, P., & Clark, R. (1998). Advances in fault diagnosis for dynamic systems. London: Springer.
[28] Slotine, J.; Hedrick, J.; Misawa, E.: On sliding observers for nonlinear systems. Transactions of the ASME: journal of dynamic systems, measurement and control 109, 245-252 (1987) · Zbl 0661.93011
[29] Sreedhar, R., Fernández, B., & Masada, G. (1993). Robust fault detection in nonlinear systems using sliding mode observers. In Proceedings of the IEEE Conference on Control Applications (pp. 715-721).
[30] Stourstrup, J., & Grimble, M. (1997). Integrating control and fault diagnosis: a separation result. In Proceedings IFAC Symposium, Safeprocess’ 97 (pp. 323-328). Hull, UK.
[31] Utkin, V. (1992). Sliding modes in control optimization. Berlin: Springer. · Zbl 0748.93044
[32] Walcott, B.; .Zak, S.: Combined observer-controller synthesis for uncertain dynamical systems with applications. IEEE transactions on systems, man and cybernetics 18, 88-104 (1988) · Zbl 0652.93019
[33] Walcott, B.; Corless, M.; .Zak, S.: Comparative study of nonlinear state observation techniques. International journal of control 45, 2109-2132 (1987) · Zbl 0627.93012
[34] Wilsky, A.: A survey of design methods for failure detection in dynamic systems. Automatica 12, 601-611 (1976) · Zbl 0345.93067