Bal, Guillaume Spatially varying discrete ordinates methods in \(XY\)-geometry. (English) Zbl 0969.65126 Math. Models Methods Appl. Sci. 10, No. 9, 1277-1303 (2000). The author treats the classical neutron transport equation on the plane when the domain consists of two squares. The integral formulation of the neutron transport and its solution by the discrete ordinates method are used. The coupling of angular discretizations is considered and the well-posedness of the coupled problem is shown. The main result is that more angular directions are required close to the directions of spatial singularities. Reviewer: P.B.Dubovski (Moskva) Cited in 2 Documents MSC: 65R20 Numerical methods for integral equations 45K05 Integro-partial differential equations 82D75 Nuclear reactor theory; neutron transport Keywords:neutron transport equation; discrete ordinates method; angular discretizations; coupling; spatial singularities PDF BibTeX XML Cite \textit{G. Bal}, Math. Models Methods Appl. Sci. 10, No. 9, 1277--1303 (2000; Zbl 0969.65126) Full Text: DOI References: [1] DOI: 10.1051/m2an:1999160 · Zbl 0931.35010 · doi:10.1051/m2an:1999160 [2] Asadzadeh M., SIAM J. Math. Anal. 23 pp 543– (1986) [3] DOI: 10.1137/0726005 · Zbl 0668.65119 · doi:10.1137/0726005 [4] DOI: 10.1142/S021820259200020X · Zbl 0767.65095 · doi:10.1142/S021820259200020X [5] Bal G., Asymptotic Anal. 20 pp 213– (1999) [6] DOI: 10.1137/S0036141098338855 · Zbl 0937.35007 · doi:10.1137/S0036141098338855 [7] Bal G., Nucl. Sci. Engrg. 127 pp 169– (1997) [8] DOI: 10.1137/0721030 · Zbl 0565.41028 · doi:10.1137/0721030 [9] DOI: 10.1137/0720065 · Zbl 0538.65097 · doi:10.1137/0720065 [10] DOI: 10.1063/1.1666510 · doi:10.1063/1.1666510 [11] DOI: 10.1137/0710018 · Zbl 0257.35004 · doi:10.1137/0710018 [12] DOI: 10.1137/0511085 · Zbl 0458.45001 · doi:10.1137/0511085 [13] DOI: 10.1137/0720064 · Zbl 0533.65096 · doi:10.1137/0720064 [14] DOI: 10.1137/0717010 · Zbl 0454.65087 · doi:10.1137/0717010 [15] Vladimirov V. S., Atomic energy of Canada Ltd, Chalk River, Ont. Report AECL pp 1661– (1963) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.