Karamian, Philippe New numerical results for thin inhibited hyperbolic shells: The case of hyperbolic paraboloid. (Nouveaux résultats numériques concernant les coques minces hyperboliques inhibées: Cas du paraboloïde hyperbolique.) (French. Abridged English version) Zbl 0969.74063 C. R. Acad. Sci., Paris, Sér. II, Fasc. b, Méc. Phys. Astron. 326, No. 11, 755-760 (1998). Summary: We present numerical tests for hyperbolic inhibited shells. The subject is to approximate the normal component of displacement with the help of Ganev-Argyris triangles when the thickness \(\varepsilon\) tends to 0. We then deal with the membrane limit problem \((\varepsilon=0)\) in order to compare these results with the last one. The tests show that for all fixed \(\varepsilon\) there exists a best non-trivial mesh step size \(h_0\), and \(\varepsilon\to 0\) involves \(h_0\to 0\). These tests are concerned with a totally clamped hyperbolic-parabolic shell. Cited in 3 Documents MSC: 74S05 Finite element methods applied to problems in solid mechanics 74K25 Shells Keywords:vanishing thickness; inhibited paraboloid; finite elements; hyperbolic inhibited shells; Ganev-Argyris triangles; membrane limit problem; mesh step size; totally clamped hyperbolic-parabolic shell PDF BibTeX XML Cite \textit{P. Karamian}, C. R. Acad. Sci., Paris, Sér. II, Fasc. b, Méc. Phys. Astron. 326, No. 11, 755--760 (1998; Zbl 0969.74063) Full Text: DOI