zbMATH — the first resource for mathematics

Existence for an unsteady fluid-structure interaction problem. (English) Zbl 0969.76017
The paper deals with fluid-structure interaction in the case where the fluid is time-dependent and the structure is a collection of rigid bodies. The authors consider two- and three-dimensional viscous incompressible flows satisfying the Navier-Stokes equations. The fluid domain depends on time and is defined by the position of the structure, itself resulting from a stress distribution coming from the fluid. The whole problem is nonlinear, and the equations are coupled. The authors prove local solvability in time. The proof is based on the estimates of nonlinear terms and on the Banach fixed point theorem (contraction mapping principle). This result is an interesting contribution to generalized problems for Navier-Stokes equations, which uses classical techniques carefully adapted to new situation.

76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids
76D05 Navier-Stokes equations for incompressible viscous fluids
35Q30 Navier-Stokes equations
Full Text: DOI EuDML
[1] R.A. Adams, Sobolev spaces. Academic Press, New York NY, San Francisco CA, London (1975).
[2] G. Allain, Un problème de Navier-Stokes avec surface libre. Thèse de troisième cycle de l’Université Paris VI, France (1983).
[3] G. Allain, Small-time existence for the Navier-Stokes equations with a free surface. Appl. Math. Optim., 16 (1987) 37-50. · Zbl 0655.76021
[4] J.T. Beale, The Initial Value Problem for the Navier-Stokes Equation with a Free Surface. Comm. Pure Appl. Math., XXXIV (1981) 359-392. · Zbl 0464.76028
[5] H. Brezis, Analyse fonctionnelle: Théorie et applications. Masson, Paris (1983). · Zbl 0511.46001
[6] C. Conca, J. San Martin and M. Tucsnak, Motion of a rigid body in viscous fluid. C. R. Acad. Sci. Paris Série I32 (1999) 473-478. Zbl0937.76012 · Zbl 0937.76012
[7] B. Desjardins and M.J. Esteban, Existence of weak solutions for the motion of rigid bodies in a viscous fluid. Arch. Ration. Mech. Anal.146 (1999) 59-71. · Zbl 0943.35063
[8] B. Desjardins and M.J. Esteban, On weak solutions for fluid-rigid structure interaction: compressible and incompressible models. Comm. Partial Differ. Eq. (to appear). · Zbl 0953.35118
[9] G. Duvaut, Mécanique des milieux continus. Masson, Paris, Milan, Barcelone, Mexico (1990).
[10] V. Girault and P.A. Raviart, Finite Element Methods for Navier-Stokes Equations. Springer-Verlag, Berlin Heidelberg (1986). · Zbl 0585.65077
[11] R. Glowinski and B. Maury, Fluid-particule flow: a symmetric formulation. C. R. Acad. Sci. Paris Sér. I Math. t. 324, (1997) 1079-1084. Zbl0880.76045 · Zbl 0880.76045
[12] C. Grandmont and Y. Maday, Existence de solutions d’un problème de couplage fluide-structure bidimensionnel instationnaire. C. R. Acad. Sci. Paris Sér. I Math. t. 326, (1998) 525-530. Zbl0924.76022 · Zbl 0924.76022
[13] J. Heywood and R. Rannacher, Finite-element approximation of the nonstationnary Navier-Stokes problem. Part III. Smoothing property and higher order error estimates for spatial discretisation. SIAM J. Numer. Anal. 25 (1988) 489-512. · Zbl 0646.76036
[14] J.L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. T. I et II, Dunod, Paris (1968). · Zbl 0165.10801
[15] D. Serre, Chute libre d’un solide dans un fluide visqueux incompressible : Existence. Japan J. Appl. Math.4 (1987) 33-73. · Zbl 0655.76022
[16] V.A. Solonnikov, Solvability of a Problem on the Motion of a Viscous Incompressible Fluid Bounded by a Free Surface. Math. USSR Izvestiya4-1 (1977) 1388-1424. · Zbl 0398.76024
[17] V.A. Solonnikov, On the Transiant Motion of an Isolated Volume of Viscous Incompressible Fluid. Math. USSR Izvestiya 31 (1988) 381-405. Zbl0850.76180 · Zbl 0850.76180
[18] V.A. Solonnikov, Unsteady motion of a finite mass of fluid, bounded by a free surface. J. Soviet Math.40 (1988) 672-686. · Zbl 0639.76035
[19] R. Temam, Navier-Stokes Equations. North-Holland Publishing Company (1977). · Zbl 0383.35057
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.