Takhar, H. S.; Gorla, Rama Subba Reddy; Soundalgekar, V. M. Radiation effects on MHD free convection flow of a gas past a semi-infinite vertical plate. (English) Zbl 0969.76606 Int. J. Numer. Methods Heat Fluid Flow 6, No. 2, 77-83 (1996). Summary: Free convection heat transfer due to the simultaneous action of buoyancy, radiation and transverse magnetic field is investigated for a semi-infinite vertical plate. Solutions are derived by expanding the stream function and the temperature into a series in terms of the parameter \(\xi =x^{1/2}L^{-1/2}\), where \(L\) is the length of the plate. Velocity and temperature functions are shown on graphs, and the numerical values of functions affecting the shear stress and the rate of heat transfer are entered in a table. The effects of the magnetic field parameter \(\lambda\) and the radiation parameter \(F\) on these functions are discussed. Cited in 22 Documents MSC: 76W05 Magnetohydrodynamics and electrohydrodynamics 76R10 Free convection 78A40 Waves and radiation in optics and electromagnetic theory Keywords:free convection; series solution; heat transfer; buoyancy; radiation; transverse magnetic fields; semi-infinite vertical plate; shear stress PDF BibTeX XML Cite \textit{H. S. Takhar} et al., Int. J. Numer. Methods Heat Fluid Flow 6, No. 2, 77--83 (1996; Zbl 0969.76606) Full Text: DOI References: [1] DOI: 10.1016/0017-9310(62)90024-8 [2] DOI: 10.1002/zamm.19210010402 · JFM 48.0968.02 [3] DOI: 10.1093/qjmam/15.1.53 · Zbl 0105.32101 [4] DOI: 10.1016/0020-7683(65)90028-4 [5] DOI: 10.1115/1.3449740 [6] Lightfoot, Proc. Lond. Math. Soc. 31 pp 97– (1929) [7] DOI: 10.1016/0017-9310(73)90262-7 · Zbl 0261.76057 [8] Elliot C. M., Weak and Variational Methods for Moving Boundary Problems (1982) [9] DOI: 10.1137/0710047 · Zbl 0256.65054 [10] DOI: 10.1115/1.3450375 [11] DOI: 10.1016/S0065-2717(08)70211-9 [12] DOI: 10.1016/0017-9310(71)90228-6 [13] DOI: 10.1115/1.3450821 [14] Murray W. D., J. Heat Transfer 81 pp 106– (1959) [15] DOI: 10.1016/0017-9310(70)90180-8 · Zbl 0223.65071 [16] Meyer G. H., Num. Heat Transfer 1 pp 351– (1978) [17] DOI: 10.1002/nme.1620080314 · Zbl 0279.76045 [18] DOI: 10.1002/nme.1620120710 [19] DOI: 10.1002/nme.1620191208 · Zbl 0526.65086 [20] DOI: 10.1002/nme.1620241006 · Zbl 0632.65128 [21] Hseih C. K., UK 47 pp 490– (1992) [22] DOI: 10.1016/0017-9310(92)90178-U · Zbl 0753.76173 [23] DOI: 10.1115/1.2911309 [24] DOI: 10.1115/1.2930007 [25] DOI: 10.1108/eb017501 [26] Akbari M., Part A 6 pp 86– (1994) [27] Li, H. Source-and-Sink Method of Solution of Two and Three Dimensional Stefan Problems, PhD Dissertation,University of Florida (1993) [28] Gnielinski V., Int. Chem. Eng. 16 pp 359– (1976) [29] Incropera F. P., Fundamental of Heal and Mass Transfer (1990) [30] DOI: 10.1115/1.3247406 [31] DOI: 10.1115/1.2930496 [32] DOI: 10.1080/00986448608911711 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.