zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Robust stabilization of uncertain input-delayed systems using reduction method. (English) Zbl 0969.93035
One considers the problem of feedback stabilization of the uncertain system $$\dot x= (A+\Delta A(t)) x(t)+ \sum^r_0 B_i u_i(t- h_i)+ \sum^r_0 \Delta B_j(t) u_j(t- \widetilde h_j)$$ with $$A(t)= DF(t)E,\quad B_j(t)= D_jF_j(t) E_j,\quad|F(t)|\le 1,\quad|F_j(t)|< 1.$$ The procedure is as follows: first the linear transformation $$z(t)= x(t)+ \sum^r_0 \int^t_{t- h_i} e^{A(t- h_i-\theta)} B_iu_i(\theta) d\theta$$ is used, then the robustly stabilizing feedback is designed using an appropriate quadratic Lyapunov functional.

MSC:
93D21Adaptive or robust stabilization
93C23Systems governed by functional-differential equations
93D30Scalar and vector Lyapunov functions
34K17Transformation and reduction of functional-differential equations and systems; normal forms
93C05Linear control systems
WorldCat.org
Full Text: DOI
References:
[1] Arstein, Z.: Linear systems with delayed control: A reduction. IEEE transactions on automatic control 27, 869-879 (1982) · Zbl 0486.93011
[2] Boyd, S., Ghaoui, L. E., Feron, E., &amp; Balakrishnan, V. (1994). SIAM. Linear Matrix Inequalities in System and Control Theory. vol. 15. PA: Philadelphia. · Zbl 0816.93004
[3] Cheres, E.; Palmor, Z. J.; Gutman, S.: MIN-MAX predictor control for uncertain systems with input delays. IEEE transactions on automatic control 35, No. 2, 210-214 (1990) · Zbl 0705.93059
[4] Choi, H. H.; Chung, M. J.: Memoryless stabilization of uncertain dynamic systems with time-varying delayed state and control. Automatica 31, 1349-1351 (1995) · Zbl 0825.93654
[5] Furukawa, T.; Shimemura, E.: Predictive control for systems with time delay. International journal of control 37, No. 2, 399-412 (1983) · Zbl 0505.93056
[6] Kim, J. H.; Jeung, E. T.; Park, H. B.: Robust control for parameter uncertain delay systems in state and control input. Automatica 32, No. 9, 1337-1339 (1996) · Zbl 0855.93075
[7] Kwon, W. H.; Pearson, A. E.: Feedback stabilization of linear systems with delayed control. IEEE transactions on automatic control 25, No. 2, 266-269 (1980) · Zbl 0438.93055
[8] Marshall, J. E.: Control of time-delay systems. (1979) · Zbl 0452.93002
[9] Niculescu, S., Verriest, E., Dion, J., &amp; Dugard, L. (1998). Stability and robust stability of time-delay systems: A guided tour. In: L. Dugard, &amp; E. Verriest (Eds.), Stability and control of time-delay systems (pp. 1-71). London: Springer. · Zbl 0914.93002
[10] Noldus, E.: Stabilization of a class of distributional convolution equations. International journal control 41, No. 4, 947-960 (1985) · Zbl 0566.93048
[11] Pandiscio, A.A. Jr., &amp; Pearson, A.E. (1993). The reducing transformation and smith predictor methods for stabilizing plants with transport lag. Proceedings of the American Control Conference San Francisco, June pp. 499-503.
[12] Watanabe, K.; Ito, M.: A process-model control for linear systems with delays. IEEE transactions on automatic control 26, 1261-1269 (1981) · Zbl 0471.93035