zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Asymptotic stability of large solutions with large perturbation to the Navier-Stokes equations. (English) Zbl 0970.35106
The author considers the asymptotic stability of $w$, the strong (Serrin’s class) solution of the Navier-Stokes equations in a domain $\Omega\subseteq \bbfR^3$ of class $C^3$, not necessarily bounded. He proves that if $v$ is a weak perturbed solution then the norm of $(w-v)$ in $L^2(t,t+ 1,L^2(\Omega))$ tends to zero as $t\to\infty$ if $v$ satisfies the stronger form of the energy inequality. Finally, he obtains explicit rates of convergence for some specific perturbations.

35Q30Stokes and Navier-Stokes equations
76E09Stability and instability of nonparallel flows
76D05Navier-Stokes equations (fluid dynamics)
Full Text: DOI
[1] Da Veiga, H. Beirão; Secchi, P.: Lp-stability for strong solutions of the Navier--Stokes equations in the whole space. Arch. rational mech. Anal. 98, 65-70 (1987) · Zbl 0678.35076
[2] Bergh, J.; Löfström, J.: Interpolation spaces. (1976) · Zbl 0344.46071
[3] Borchers, W.; Miyakawa, T.: L2 decay for Navier--Stokes flows in unbounded domains with application to exterior stationary flows. Arch. rational mech. Anal. 118, 273-295 (1992) · Zbl 0756.76018
[4] Chen, Z. -M.: Solutions of the stationary and nonstationary Navier--Stokes equations in exterior domains. Pacific J. Math. 159, 227-240 (1993) · Zbl 0787.35062
[5] Foias, C.: Une remarque sur l’unicité des solutions de Navier--Stokes en dimension n. Bull. soc. Math. France 89, 1-8 (1961)
[6] Fujita, H.; Kato, T.: On the Navier--Stokes initial value problem 1. Arch. rational mech. Anal. 46, 269-315 (1964) · Zbl 0126.42301
[7] Fujiwara, D.; Morimoto, H.: An lr theorem of the Helmholtz decomposition of vector fields. J. fac. Sci. univ. Tokyo sect. IA math. 24, 685-700 (1977) · Zbl 0386.35038
[8] Giga, Y.: Domains of fractional powers of the Stokes operator in lr spaces. Arch. rational mech. Anal. 89, 251-265 (1985) · Zbl 0584.76037
[9] Giga, Y.; Sohr, H.: Abstract lp estimates for the Cauchy problem with applications to the Navier--Stokes equations in exterior domains. J. funct. Anal. 102, 72-94 (1991) · Zbl 0739.35067
[10] Heywood, J. G.: On stationary solutions of the Navier--Stokes equations as limits of nonstationary solutions. Arch. rational mech. Anal. 37, 48-60 (1970) · Zbl 0194.41402
[11] Hopf, E.: Über die anfangswertaufgabe für die hydrodyanamischen grundgleichungen. Math. nachr. 4, 213-231 (1950--1951)
[12] Iwashita, H.: Lq-lr estimates for solutions of the nonstationary Stokes equations in an exterior domain and the Navier--Stokes initial value problems in lq spaces. Math. ann. 285, 265-288 (1989) · Zbl 0659.35081
[13] Kato, T.: Strong lp-solution of the Navier--Stokes equation in rm, with applications to weak solutions. Math. Z. 187, 471-480 (1984) · Zbl 0545.35073
[14] Kawanago, T.: Stability estimate of strong solutions for the Navier--Stokes system and its application. Electron. J. Differential equations 15 (1998) · Zbl 0912.35120
[15] Kozono, H.; Ogawa, T.: On stability of the Navier--Stokes flows in exterior domains. Arch. rational mech. Anal. 128, 1-31 (1994) · Zbl 0833.76016
[16] Kozono, H.; Ogawa, T.: Global strong solution and its decay properties for the Navier--Stokes equations in three dimensional domains with non-compact boundaries. Math. Z. 216, 1-30 (1994) · Zbl 0798.35127
[17] Ladyzhenskaya, O. A.: The mathematical theory of viscous incompressible flow. (1969) · Zbl 0184.52603
[18] Leray, J.: Sur le mouvement d’un liquids visqeux emplissant l’espace. Acta math. 63, 193-248 (1934)
[19] Masuda, K.: On the stability of incompressible viscous fluid motions pas object. J. math. Soc. Japan 27, 294-327 (1975) · Zbl 0303.76011
[20] Masuda, K.: Weak solutions of the Navier--Stokes equations. Tôhoku math. J. 36, 623-646 (1984) · Zbl 0568.35077
[21] Miyakawa, T.; Sohr, H.: On energy inequality, smoothness and large time behavior in L2 for weak solutions of the Navier--Stokes equations in exterior domains. Math. Z. 199, 455-488 (1988) · Zbl 0642.35067
[22] Ogawa, T.; Rajopadhye, S. V.; Schonbek, M. E.: Energy decay for a weak solution of the Navier--Stokes equations with slowly varying external forces. J. funct. Anal. 144, 325-358 (1997) · Zbl 0873.35064
[23] Ponce, G.; Racke, R.; Sideris, T. C.; Titi, E. S.: Global stability of large solutions to the 3D Navier--Stokes equations. Comm. math. Phys. 159, 329-341 (1994) · Zbl 0795.35082
[24] Secchi, P.: L2-stability for weak solutions of the Navier--Stokes equations in R3. Indiana univ. Math. J. 36, 685-691 (1987) · Zbl 0635.35076
[25] Serrin, J.: On the interior regularity of weak solutions of the Navier--Stokes equations. Arch. rational mech. Anal. 9, 187-195 (1962) · Zbl 0106.18302
[26] Serrin, J.: The initial value problem for the Navier--Stokes equations. Nonlinear problems, 69-98 (1963) · Zbl 0115.08502
[27] Simader, C. G.; Sohr, H.: A new approach to the Helmholtz decomposition and the Neumann problem in lq-spaces for bounded and exterior domains. Appl. sci., 1-35 (1992) · Zbl 0791.35096
[28] Solonnikov, V. A.: Estimates for solutions of nonstationary Navier--Stokes equations. J. soviet. Math. 8, 467-529 (1977) · Zbl 0404.35081
[29] Tanabe, H.: Equations of evolutions. (1979) · Zbl 0417.35003
[30] Ukai, S.: A solution formula for the Stokes equation in rn+. Comm. pure appl. Math. 40, 611-621 (1987) · Zbl 0638.76040
[31] Wiegner, M.: Decay results for weak solutions of the Navier--Stokes equations in rn. J. London math. Soc. 35, 303-313 (1987) · Zbl 0652.35095