Al-Musallam, F.; Tuan, Vu Kim Integral transforms related to a generalized convolution. (English) Zbl 0970.44004 Result. Math. 38, No. 3-4, 197-208 (2000). A general convolution transform of the Fourier cosine-sine type is investigated. The authors find necessary and sufficient conditions on the kernel function, which makes the mentioned transform a unitary transform on \(L_2(\mathbb{R})\). A special class of the Fourier sine kernels is defined. Watson and Plancherel type theorems are proved. Interesting examples of convolutions, which are associated with the Airy, Anger-Weber and modified Bessel special functions as kernels are demonstrated. Reviewer: Semyon Yakubovich (Porto) Cited in 19 Documents MSC: 44A35 Convolution as an integral transform 42A38 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type Keywords:Fourier cosine and sine transforms; Plancherel theorem; Watson theorem; Airy function as kernel; Anger-Weber function as kernel; Bessel function as kernel; convolution transform × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Abramowitz, M.; Stegun, IA, Handbook of Mathematical Functions, with Formulas, Graphs and Mathematical Tables (1964), Washington DC: Natl. Bur. of Standard, Washington DC · Zbl 0171.38503 [2] Al-Musallam F. and Vu Kim Tuan, A class of convolution transformations (submitted). · Zbl 1032.44008 [3] Bochner, S.; Chandrasekharan, K., Fourier Transforms (1949), Princeton: Princeton Univ. Press, Princeton · Zbl 0065.34101 [4] Churchill, RV, Operational Mathematics (1972), New York: McGraw-Hill, New York · Zbl 0227.44001 [5] Glaeske, HJ; Vu Kim, T., Convolution of Hilbert transform and its application to some nonlinear singular equations, Integral Transforms and Special Functions, 3, 4, 263-268 (1995) · Zbl 0842.44008 · doi:10.1080/10652469508819082 [6] Nguyen Xuan, T.; Kakichev, VA; Vu Kim, T., On the generalized convolutions for Fourier cosine and sine transforms, East-West J. Math., 1, 1, 85-90 (1998) · Zbl 0935.42004 [7] Saigo, M.; Yakubovich, SB, On the theory of convolution integrals for G-transforms, Fukuoka Univ. Sci. Reports, 21, 2, 181-193 (1991) · Zbl 0917.44004 [8] Srivastava, HM; Vu Kim, T., A new convolution theorem for the Stieltjes transform and its application to a class of singular integral equations, Arch. Math., 64, 2, 144-149 (1995) · Zbl 0813.44006 · doi:10.1007/BF01196634 [9] Sneddon, IN, The Use of Integral Transforms (1972), New York: McGraw-Hill, New York · Zbl 0237.44001 [10] Stein, EM; Weiss, G., Introduction to Fourier Analysis on Euclidean Space (1991), Princeton: Princeton Univ. Press, Princeton [11] Titchmarsh, EC, Introduction to the Theory of Fourier Integrals (1967), Oxford: Clarendon Press, Oxford [12] Watson, GN, A Treatise on the Theory of Bessel Functions (1944), Cambridge: Cambridge Univ. Press, Cambridge · Zbl 0063.08184 [13] Vu Kim, T.; Saigo, M., Convolution of Hankel transform and its application to an interal involving Bessel function of first kind, Internat. J. Math. Math. Sci., 18, 3, 545-550 (1995) · Zbl 0828.33001 · doi:10.1155/S016117129500069X [14] Vu Kim, T., Integral transforms of Fourier cosine convolution type, J. Math. Anal. Appl., 229, 519-529 (1999) · Zbl 0920.46035 · doi:10.1006/jmaa.1998.6177 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.