On Mittag-Leffler-type functions in fractional evolution processes. (English) Zbl 0970.45005

The authors review a variety of fractional evolution processes, a phenomenon governed by an integro-differential equation containing integrals and/or derivatives of fractional order in time whose solutions turn out to be related to Mittag-Leffter-type functions. The equations chosen are the simplest of the fractional calculus and include the Abel integral equations of the second kind, which are relevant in typical inverse problems, and the fractional differential equations, which govern generalized relaxation and oscillation phenomena.


45J05 Integro-ordinary differential equations
26A33 Fractional derivatives and integrals
33E20 Other functions defined by series and integrals
Full Text: DOI


[1] Agarwal, R. P., A propos d’une note de M. Pierre Humbert, C.R. Acad. Sci. Paris, 236, 2031-2032 (1953) · Zbl 0051.30801
[2] Barret, J. H., Differential equations of non-integer order, Canad. J. Math., 6, 529-541 (1954) · Zbl 0058.10702
[5] Caputo, M., Linear models of dissipation whose \(Q\) is almost frequency independent, Part II, Geophys. J. Roy. Astron. Soc., 13, 529-539 (1967)
[7] Caputo, M.; Mainardi, F., Linear models of dissipation in anelastic solids, Riv. Nuovo Cimento (Ser. II), 1, 161-198 (1971)
[9] Craig, J. D.; Brown, J. C., Inverse Problems in Astronomy (1986), Adam Hilger: Adam Hilger Bristol · Zbl 0666.35001
[10] Davis, H. T., The Theory of Linear Operators (1936), Principia Press: Principia Press Bloomington, IN · JFM 62.0457.02
[12] Dzherbashian, M. M., Harmonic Analysis and Boundary Value Problems in the Complex Domain (1993), Birkhäuser: Birkhäuser Basel
[16] Gorenflo, R.; Kilbas, A. A.; Rogozin, S., On the generalized Mittag-Leffler type functions, Integral Transforms Special Functions, 7, 215-224 (1998) · Zbl 0935.33012
[20] Gorenflo, R.; Mainardi, F., Fractional calculus: integral and differential equations of fractional order, (Carpinteri, A.; Mainardi, F., Fractals and Fractional Calculus in Continuum Mechanics (1997), Springer: Springer Wien), 223-276 · Zbl 1438.26010
[21] Gorenflo, R.; Mainardi, F., Fractional calculus and stable probability distributions, Arch. Mech., 50, 377-388 (1998) · Zbl 0934.35008
[24] Gorenflo, R.; Vessella, S., Abel Integral Equations: Analysis and Applications. Abel Integral Equations: Analysis and Applications, Lecture Notes in Mathematics, Vol. 1461 (1991), Springer: Springer Berlin · Zbl 0717.45002
[26] Gross, B., On creep and relaxation, J. Appl. Phys., 18, 212-221 (1947)
[27] Hadid, S. B.; Luchko, Yu., An operational method for solving fractional differential equations of an arbitrary order, Panam. Math. J., 6, 57-73 (1996) · Zbl 0848.44003
[28] Hille, E.; Tamarkin, J. D., On the theory of linear integral equations, Ann. Math., 31, 479-528 (1930) · JFM 56.0337.01
[29] Humbert, P., Quelques résultats relatifs à la fonction de Mittag-Leffler, C.R. Acad. Sci. Paris, 236, 1467-1468 (1953) · Zbl 0050.10404
[30] Humbert, P.; Agarwal, R. P., Sur la fonction de Mittag-Leffler et quelques-unes de ses généralisations, Bull. Sci. Math (Ser. II), 77, 180-185 (1953) · Zbl 0052.06402
[31] Kilbas, A. A.; Saigo, M., On Mittag-Leffler type functions, fractional calculus operators and solution of integral equations, Integral Transforms Special Functions, 4, 355-370 (1996) · Zbl 0876.26007
[33] Mainardi, F., The fundamental solutions for the fractional diffusion-wave equation, Appl. Math. Lett., 9, 6, 23-28 (1996) · Zbl 0879.35036
[34] Mainardi, F., Fractional relaxation-oscillation and fractional diffusion-wave phenomena, Chaos, Solitons Fractals, 7, 1461-1477 (1996) · Zbl 1080.26505
[35] Mainardi, F., Fractional calculus: some basic problems in continuum and statistical mechanics, (Carpinteri, A.; Mainardi, F., Fractals and Fractional Calculus in Continuum Mechanics (1997), Springer: Springer Wien), 291-348 · Zbl 0917.73004
[37] Mainardi, F.; Gorenflo, R., The Mittag-Leffler function in the Riemann-Liouville fractional calculus, (Kilbas, A. A., Boundary Value Problems, Special Functions and Fractional Calculus (1996), Belarusian State University: Belarusian State University Minsk), 215-225
[39] Miller, K. S.; Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations (1993), Wiley: Wiley New York · Zbl 0789.26002
[40] Mittag-Leffler, G. M., Sur l’intégrale de Laplace-Abel, C.R. Acad. Sci. Paris (Ser. II), 136, 937-939 (1902) · JFM 33.0408.01
[41] Mittag-Leffler, G. M., Une généralisation de l’intégrale de Laplace-Abel, C.R. Acad. Sci. Paris (Ser. II), 137, 537-539 (1903) · JFM 34.0434.02
[42] Mittag-Leffler, G. M., Sur la nouvelle fonction \(E_α (x)\), C.R. Acad. Sci. Paris (Ser. II), 137, 554-558 (1903) · JFM 34.0435.01
[43] Mittag-Leffler, G. M., Sopra la funzione \(E_α (x)\), R. Accad. Lincei, Rend. (Ser. V), 13, 3-5 (1904) · JFM 35.0448.02
[44] Mittag-Leffler, G. M., Sur la représentation analytique d’une branche uniforme d’une fonction monogène, Acta Math., 29, 101-181 (1905) · JFM 36.0469.02
[45] Oldham, K. B.; Spanier, J., The Fractional Calculus (1974), Academic Press: Academic Press New York · Zbl 0428.26004
[46] Podlubny, I., Fractional Differential Equations (1999), Academic Press: Academic Press San Diego · Zbl 0918.34010
[47] Phragmén, E., Sur une extension d’un théoreme classique de la théorie des fonctions, Acta Math., 28, 351-368 (1904) · JFM 35.0404.01
[50] Al Saqabi, B. N.; Kim Tuan, Vu, Solution of a fractional differintegral equation, Integral Transforms Special Functions, 4, 321-326 (1996) · Zbl 0864.34002
[51] Srivastava, H. M., On an extension of the Mittag-Leffler function, Yokohama Math. J., 16, 77-88 (1968) · Zbl 0175.07001
[52] Wiman, A., Über die Nullstellen der Funktionen \(E_α (x)\), Acta Math., 29, 217-234 (1905) · JFM 36.0472.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.