zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Numerical bifurcation analysis of delay differential equations. (English) Zbl 0970.65090
The authors outline numerical methods for the computation and stability analysis of steady-state solutions and periodic solutions of systems of delay differential equations with several constant delays. These methods can be used in a continuation procedure to follow branches of solutions, to determine their stability and to locate bifurcation points. The authors also discussed some open problems and new difficulties for delay differential equations of neutral type.

MSC:
65L15Eigenvalue problems for ODE (numerical methods)
34K18Bifurcation theory of functional differential equations
34K13Periodic solutions of functional differential equations
65L20Stability and convergence of numerical methods for ODE
34K20Stability theory of functional-differential equations
34K28Numerical approximation of solutions of functional-differential equations
34K40Neutral functional-differential equations
WorldCat.org
Full Text: DOI
References:
[1] Avellar, C. E.; Hale, J. K.: On the zeros of exponential polynomials. J. math. Anal. appl. 73, 434-452 (1980) · Zbl 0435.30005
[2] Castelfranco, A. M.; Stech, H. W.: Periodic solutions in a model of recurrent neural feedback. SIAM J. Appl. math. 47, No. 3, 573-588 (1987) · Zbl 0627.34046
[3] E.J. Doedel, P.P.C. Leung, A numerical technique for bifurcation problems in delay differential equations, Congr. Num. 34 (1982) 225--237 (Proceedings of the 11th Manitoba Conference on Num. Math. Comput., University of Manitoba, Winnipeg, Canada). · Zbl 0562.65054
[4] El’sgol’ts, L. E.; Norkin, H. W.: Introduction to the theory and application of differential equations with deviating arguments. Mathematics in science and engineering 105 (1973)
[5] K. Engelborghs, T. Luzyanina, K.J. in ’t Hout, D. Roose, Collocation methods for the computation of periodic solutions of delay differential equations, Technical Report TW295, Department of Computer Science, K.U. Leuven, 1999. · Zbl 0981.65082
[6] Engelborghs, K.; Roose, D.: Numerical computation of stability and detection of Hopf bifurcations of steady-state solutions of delay differential equations. Adv. comput. Math. 10, No. 3--4, 271-289 (1999) · Zbl 0929.65054
[7] Engelborghs, K.; Roose, D.: Smoothness loss of periodic solutions of a neutral functional differential equation: on a bifurcation of the essential spectrum. Dynamics stability systems 14, No. 3, 255-273 (1999) · Zbl 0936.34057
[8] Engelborghs, K.; Roose, D.; Luzyanina, T.: Bifurcation analysis of periodic solutions of neutral functional differential equations: a case study. Int. J. Bifurc. chaos 8, No. 10, 1889-1905 (1998) · Zbl 0941.34070
[9] B. Ermentrout, XPPAUT3.91 -- The differential equations tool, University of Pittsburgh, Pittsburgh, 1998, (http://www.pitt.edu/\simphase/).
[10] N.J. Ford, V. Wulf, Embedding of the numerical solution of a dde into the numerical solution of a system of odes, Technical Report, Manchester Centre for Computational Mathematics, University of Manchester, 1998.
[11] Wulf, V.; Ford, N. J.: Numerical Hopf bifurcation for a class of delay differential equations. J. comput. Appl. math. 115, No. 1--2, 601-616 (2000) · Zbl 0946.65065
[12] Gourley, S. A.; Bartuccelli, M. V.: Parameter domains for instability of uniform states in systems with many delays. J. math. Biol. 35, 843-867 (1997) · Zbl 0878.92001
[13] Hadeler, K. P.: Effective computation of periodic orbits and bifurcation diagrams in delay equations. Numer. math. 34, 457-467 (1980) · Zbl 0419.34070
[14] Hale, J. K.: Theory of functional differential equations. Applied mathematical sciences 3 (1977) · Zbl 0352.34001
[15] Hale, J. K.; Lunel, S. M. Verduyn: Introduction to functional differential equations. Applied mathematical sciences 99 (1993) · Zbl 0787.34002
[16] B.D. Hassard, A code for Hopf bifurcation analysis of autonomous delay-differential systems, in: W.F. Langford, F.V. Atkinson, A.B. Mingarelli (Eds.), Oscillations, Bifurcations and Chaos, Canadian Mathematical Society Conference Proceedings, Vol. 8, Amer. Math. Soc., Providence, RI, 1987, pp. 447--463. · Zbl 0628.34075
[17] P. Kravanja, M. Van Barel, A. Haegemans, Computing the zeros of analytic functions, Lecture Notes in Mathematics, Vol. 1727, Springer, Berlin, 2000. · Zbl 0945.65018
[18] Louisell, J.: Numerics of the stability exponent and eigenvalue abscissas of a matrix delay system. Stability and control of time-delay systems, lecture notes in control and information sciences, vol. 228 228 (1997)
[19] Luzyanina, T.; Engelborghs, K.; Lust, K.; Roose, D.: Computation, continuation and bifurcation analysis of periodic solutions of delay differential equations. Int. J. Bifurc. chaos 7, No. 11, 2547-2560 (1997) · Zbl 0910.34057
[20] Luzyanina, T.; Roose, D.: Numerical stability analysis and computation of Hopf bifurcation points for delay differential equations. J. comput. Appl. math. 72, 379-392 (1996) · Zbl 0855.65092
[21] Meerbergen, K.; Roose, D.: Matrix transformations for computing rightmost eigenvalues of large sparse non-symmetric eigenvalue problems. IMA J. Numer. anal. 16, 297-346 (1996) · Zbl 0856.65033
[22] W. Michiels, K. Engelborghs, D. Roose, Sensitivity to delays in neutral equations, Technical Report TW286, Department of Computer Science, K.U. Leuven, Belgium, 1998. · Zbl 1016.34079
[23] Plant, R. E.: A Fitzhugh differential-difference equation modeling recurrent neural feedback. SIAM J. Appl. math. 40, No. 1, 150-162 (1981) · Zbl 0459.92007
[24] Saad, Y.: Numerical methods for large eigenvalue problems. (1992) · Zbl 0991.65039
[25] K. Engelborghs, DDE-BIFTOOL: a Matlab package for bifurcation analysis of delay differential equations, Technical Report TW 305, K.U. Leuven, Belgium, May 2000.
[26] Baker, C. T. H.: Retarded differential equations. J. comput. Appl. math. 125, 309-335 (2000) · Zbl 0970.65079