×

zbMATH — the first resource for mathematics

Numerical simulation of laminar reacting flows with complex chemistry. (English) Zbl 0970.76065
Summary: We present an adaptive algorithm for low Mach number reacting flows with complex chemistry. Our approach uses a form of the low Mach number equations that discretely conserves both mass and energy. The discretization methodology is based on a robust projection formulation that accommodates large density contrasts. The algorithm uses an operator-split treatment of stiff reaction terms and includes effects of differential diffusion. The basic computational approach is embedded in an adaptive projection framework that uses structured hierarchical grids with subcycling in time that preserves the discrete conservation properties of the underlying single-grid algorithm. We present numerical examples illustrating the performance of the method on both premixed and non-premixed flames.

MSC:
76M20 Finite difference methods applied to problems in fluid mechanics
76V05 Reaction effects in flows
80A32 Chemically reacting flows
Software:
CHEMKIN; VODE
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1006/jcph.1998.5890 · Zbl 0933.76055 · doi:10.1006/jcph.1998.5890
[2] Almgren A S, Technical Report, SIAM, J. Sci. Comput. (1999)
[3] DOI: 10.1137/S1064827593244213 · Zbl 0845.76055 · doi:10.1137/S1064827593244213
[4] DOI: 10.1088/1364-7830/3/3/305 · Zbl 0951.76035 · doi:10.1088/1364-7830/3/3/305
[5] DOI: 10.1088/1364-7830/3/4/304 · doi:10.1088/1364-7830/3/4/304
[6] DOI: 10.1137/0910062 · Zbl 0677.65075 · doi:10.1137/0910062
[7] DOI: 10.1080/00102209308907674 · doi:10.1080/00102209308907674
[8] DOI: 10.1016/0010-2180(81)90027-4 · doi:10.1016/0010-2180(81)90027-4
[9] Crutchfield W Y, Sci. Prog. 2 pp 145– (1993)
[10] DOI: 10.1002/nme.1620370308 · Zbl 0792.76045 · doi:10.1002/nme.1620370308
[11] Frenklach M, Technical Report, GRI-95/0058 (1995)
[12] DOI: 10.1016/0899-8248(91)90010-R · Zbl 0744.65090 · doi:10.1016/0899-8248(91)90010-R
[13] DOI: 10.1063/1.1761178 · Zbl 1180.76043 · doi:10.1063/1.1761178
[14] DOI: 10.1137/0916045 · Zbl 0829.76063 · doi:10.1137/0916045
[15] Kee R J, Technical Report, SAND86-8246 (1986)
[16] Kee R J, PREMIX Users Manual (1998)
[17] Kee R J, Technical Report, SAND96-8216 (1996)
[18] Kee R J, Technical Report, SAND83-8209 (1983)
[19] DOI: 10.1006/jcph.1999.6322 · Zbl 0958.76061 · doi:10.1006/jcph.1999.6322
[20] Lai M F, PhD Thesis (1993)
[21] Lai, M F, Bell, J B and Colella, P. A projection method for combustion in the zero Mach number limit. Proc. 11th AIAA Computational Fluid Dynamics Conf. pp.776–83.
[22] DOI: 10.1080/00102208508960376 · doi:10.1080/00102208508960376
[23] DOI: 10.1080/00102209508907812 · doi:10.1080/00102209508907812
[24] DOI: 10.2514/3.9371 · doi:10.2514/3.9371
[25] DOI: 10.1006/jcph.1996.0166 · Zbl 0859.76047 · doi:10.1006/jcph.1996.0166
[26] Mohammed R H, 27th Int. Symp. on Combustion 1 pp 693– (1998)
[27] DOI: 10.1006/jcph.1997.5856 · Zbl 0936.76064 · doi:10.1006/jcph.1997.5856
[28] Najm H N, Technical Report, SAND98-8232 (1998)
[29] Pember R B, Transport Phenomena in Combustion pp 1200– (1996)
[30] DOI: 10.1080/00102209808915770 · doi:10.1080/00102209808915770
[31] Pember R B, Fall Meeting of the Western States Section of the Combustion Institute (October 1995), WSS/CI 95F0165 (1995)
[32] Rehm R G, NBS, J. Res. 83 pp 297– (1978)
[33] Rendleman C A, Technical Report, LBNL-43154 (1999)
[34] DOI: 10.1016/0010-2180(91)90011-Y · doi:10.1016/0010-2180(91)90011-Y
[35] Smooke M D, Int. 24th Symp. on Combustion pp 813– (1992)
[36] DOI: 10.1080/00102209508960394 · doi:10.1080/00102209508960394
[37] DOI: 10.1006/jcph.1998.6106 · Zbl 0930.76068 · doi:10.1006/jcph.1998.6106
[38] Smooke M D, Mathematical Modeling in Combustion and Related Topics pp 261– (1988) · doi:10.1007/978-94-009-2770-4_17
[39] Warnatz J, Numerical Methods in Flame Propagation (1982)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.