zbMATH — the first resource for mathematics

On the equations defining minimal varieties. (English) Zbl 0971.14002
The aim of the paper is to give a precise description of the equations satisfied by the projective varieties of minimal degree with more than one irreducible component, following the classification obtained by S. Xambó [Collect. Math. 32, 149-163 (1981; Zbl 0501.14020)], answering a question of C. de Concini, D. Eisenbud and C. Procesi [“Hodge algebras”, Astérisque 91 (1982; Zbl 0509.13026)].

14A05 Relevant commutative algebra
14A10 Varieties and morphisms
14J10 Families, moduli, classification: algebraic theory
14J45 Fano varieties
Full Text: DOI
[1] Barile M., J. of Algebra 205 (1998)
[2] Bertini E., Introduzione alia geometria proiettiva degli iperspazi (1907) · JFM 38.0582.02
[3] De Concini C., Astérisque 91 (1982)
[4] Del Pezzo P., Rend. Circ. Mat 1 (1886)
[5] DOI: 10.1016/0021-8693(84)90092-9 · Zbl 0531.13015 · doi:10.1016/0021-8693(84)90092-9
[6] Gimenez Ph, The analytic spread of certain toric varieties of codimension two
[7] Harris J., Thesis (1976)
[8] Harris J., Algebraic Geometry (1992)
[9] DOI: 10.2307/2373709 · Zbl 0301.14011 · doi:10.2307/2373709
[10] Xambó S., Collect. Math 32 pp 149– (1981)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.