×

zbMATH — the first resource for mathematics

Fibrations sur le cercle et surfaces complexes. (Fibrations over the circle and complex surfaces). (French) Zbl 0971.32013
In this interesting paper the author proves (Theorem 5.2): Let \(M\) be a Waldhausen manifold. There exists a family of degenerating complex curves such that \(M\) is its boundary if and only if there exists a horizontal fibration \(\varphi: M\to S^1\) having negative Dehn numbers.
The complete list of such horizontal fibrations \(\varphi: M\to S^1\) can be obtained by applying the algorithm given by author in 4.8.

MSC:
32S25 Complex surface and hypersurface singularities
32C20 Normal analytic spaces
14J17 Singularities of surfaces or higher-dimensional varieties
57M99 General low-dimensional topology
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] Variétés graphées fibrées sur le cercle et difféomorphismes quasi-finis de surfaces, (1996) · Zbl 0874.57014
[2] Neighbourhoods of algebraic sets, Trans. Amer. Math. Soc., 276, 517-530, (1983) · Zbl 0529.14013
[3] The integral Seifert form does not determine the topology of plane curve germs, J. Algebraic Geom., 3, 1-38, (1994) · Zbl 0810.32005
[4] Three dimensional link theory and invariants of plane curves singularities, 110, (1985), Princeton University Press, Princeton · Zbl 0628.57002
[5] Families of Riemann surfaces over the punctured disk, Pacific J. Math., 150, 79-96, (1991) · Zbl 0734.30039
[6] Über modifikationen und exceptionelle analytische raumformen, Math. Ann., 146, 331-368, (1962) · Zbl 0178.42702
[7] Fibrés de Seifert: classification et existence de feuilletages, C. R. Acad. Sci. Paris, Sér. I Math, 295, 677-679, (1982) · Zbl 0521.57023
[8] Differentiable manifolds and quadratic forms, (1971), Dekker Publ. · Zbl 0226.57001
[9] Holomorphic families of Riemann surfaces and Teichmüller spaces, 97, 277-300, (1981), Princeton Univ. Press, Princeton, NJ · Zbl 0476.32025
[10] Courbes polaires et topologie des courbes planes, Ann. Sci. École Norm. Sup., 24, 141-169, (1991) · Zbl 0748.32018
[11] Singular points of complex hypersurfaces, (1968), Princeton University Press · Zbl 0184.48405
[12] Pseudo-periodic homeomorphisms and degeneration of Riemann surfaces, Bull. Amer. Math. Soc., 30, 70-75, (1994) · Zbl 0797.30036
[13] Pseudo-periodic maps and degeneration of Riemann surfaces, I, II, (19911992) · Zbl 1239.57001
[14] The topology of normal singularities of an algebraic surface and a criterion for simplicity, Publ. Math Inst. Hautes Études Sci., 9, 1-87, (1961) · Zbl 0108.16801
[15] A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves, Trans. Amer. Math. Soc., 268, 299-344, (1981) · Zbl 0546.57002
[16] Surface transformation classes of algebraically finite type, 21/No 2, (1944), Birkhäuser 1986 · Zbl 0063.05952
[17] Die Structur periodischer transformationen von Flächen, 21, n°2, (1937), Birkhäuser, 1986 · JFM 63.0553.03
[18] Variétés de waldhausen et fibrations sur le cercle, C.R. Acad. Sci. Paris, 324, 655-658, (1997) · Zbl 0876.57024
[19] Three-dimensional manifolds which are the boundary of a normal singularity \(z^k -f(x,y)=0,\) Math. Zeit, 231, 625-654, (1999) · Zbl 0934.32019
[20] On the Maskit coordinates of Teichmüller spaces and modular transformations, Kodai Math. J., 12, 437-443, (1989) · Zbl 0698.32013
[21] Eine klasse von 3-dimensionalen mannifaltigkeiten II, Invent. Math., 4, 87-117, (1967) · Zbl 0168.44503
[22] On the existence of certain families of curves, Amer. J. Math., 96, 215-228, (1974) · Zbl 0334.14004
[23] Canonical reducing curves of surface homeomorphism, Acta Math. Sinica, 3, 305-313, (1987) · Zbl 0651.57008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.