×

Explicit solutions to three nonlinear physical models. (English) Zbl 0971.34001

Summary: Explicit solutions are derived to three coupled nonlinear physical model equations by using a delicate way of the ansatz method.

MSC:

34A05 Explicit solutions, first integrals of ordinary differential equations
34A34 Nonlinear ordinary differential equations and systems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Cariello, F.; Tabor, M., Physica D, 53, 59 (1991) · Zbl 0745.35046
[2] Dodd, R.; Fordy, A., Phys. Lett. A, 89, 168 (1982)
[3] Fan, E., Phys. Lett. A, 282, 18 (2001) · Zbl 0984.37092
[4] Fan, E. G.; Zhang, H. Q., Phys. Lett. A, 245, 389 (1998) · Zbl 0947.35126
[5] Fan, E. G.; Zhang, H. Q., Phys. Lett. A, 246, 403 (1998) · Zbl 1125.35308
[6] Feng, X., Int. J. Theor. Phys., 39, 207 (2000) · Zbl 0962.35033
[7] Feng, X., Math. Manus., 84, 361 (1994) · Zbl 0809.35103
[8] Feng, X., Phys. Lett. A, 213, 167 (1996) · Zbl 0972.35525
[9] Gardner, C. S.; Kruskal, J. M.; Miura, R. M., Phys. Rev. Lett., 19, 1095 (1967) · Zbl 1061.35520
[10] Hirota, R.; Satsuma, J., Phys. Lett. A, 85, 407 (1981)
[11] Lu, B. Q., Phys. Lett. A, 189, 25 (1994) · Zbl 0941.35531
[12] Lu, H. J.; Wang, M. X., Phys. Lett. A, 255, 4-6, 249 (1999) · Zbl 0936.35164
[13] Matsuno, Y., Bilinear Transform Method (1984), Academic Press: Academic Press London · Zbl 0552.35001
[14] Singh, S. V.; Rao, N. N.; Shukla, P. K., J. Plasma Phys., 60, 551 (1998)
[15] Wang, M. L., Phys. Lett. A, 216, 67 (1996)
[16] Wilson, G., Phys. Lett. A, 89, 332 (1982)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.