A-quasiconvexity: Relaxation and homogenization. (English) Zbl 0971.35010

The paper deals with problems in the calculus of variations where minimization of the energy functional \[ (u,v)\mapsto\int_\Omega f\bigl(x,u(x),v(x)\bigr) dx \] (with \(\Omega\subset{\mathbb{R}}^N\) open, \(u:\Omega\to{\mathbb{R}}^m\), \(v:\Omega\to{\mathbb{R}}^d\)) is performed with a differential constraint \({\mathcal A}v=0\), where \[ {\mathcal A}v:=\sum_{i=1}^N A^{(i)}{\partial v\over\partial x_i}, \] and \(A^{(i)}:{\mathbb{R}}^d\to{\mathbb{R}}^l\) are linear transformations satisfying the property that the rank of the linear operator \(\sum_iw_iA^{(i)}w\) is independent of \(w\in{\mathbb{R}}^N\setminus\{0\}\). This general framework contains the classical problems of the calculus of variations (with \({\mathcal A}\) equal to the curl operator, so that \(v\) is a gradient) but also several other cases of interest: divergence free fields, magnetostatics, higher-order gradients and others. One of the main results of the paper is the integral representation of the relaxed energy, in the case when convergence in measure of \(u\) and weak convergence of \(v\) in \(L^q\) are taken into account, with \(q>1\). The relaxed energy functional has the same form of the original function, with \(f\) replaced by the \({\mathcal A}\)-quasiconvexification of \(f(x,u,\cdot)\), defined by the infimum of \[ \int_{(0,1)^N}f\bigl(x,u(x),v+w(y)\bigr) dy \] among all smooth and 1-periodic functions \(w\) with zero mean and in the kernel of \({\mathcal A}\). This result extends and puts in a unified framework of several relaxation results previously available in the literature. Applications to relaxation problems for higher-order gradients are also discussed in detail. The final part of the paper deals with homogenization results for periodic integrand in the context of \({\mathcal A}\)-quasiconvexity. The proofs are bases on the blow-up method of Fonseca and Muller and on the theory of Young measures.
Reviewer: L.Ambrosio (Pisa)


35B27 Homogenization in context of PDEs; PDEs in media with periodic structure
49J45 Methods involving semicontinuity and convergence; relaxation
Full Text: DOI EuDML Link


[1] E. Acerbi and N. Fusco, Semicontinuity problems in the calculus of variations. Arch. Rational Mech. Anal. 86 ( 1984) 125 -145. Zbl0565.49010 MR751305 · Zbl 0565.49010
[2] M. Amar and V. De Cicco, Relaxation of quasi-convex integrals of arbitrary order. Proc. Roy. Soc. Edinburgh Sect. A 124 ( 1994) 927-946. Zbl0831.49025 MR1303762 · Zbl 0831.49025
[3] L. Ambrosio, S. Mortola and V.M. Tortorelli, Functionals with linear growth defined on vector valued BV functions. J. Math. Pures Appl. 70 ( 1991) 269-323. Zbl0662.49007 MR1113814 · Zbl 0662.49007
[4] E.J. Balder, A general approach to lower semicontinuity and lower closure in optimal control theory. SIAM J. Control Optim. 22 ( 1984) 570-598. Zbl0549.49005 MR747970 · Zbl 0549.49005
[5] J.M. Ball, A version of the fundamental theorem for Young measures, in PDE’s and Continuum Models of Phase Transitions, edited by M. Rascle, D. Serre and M. Slemrod. Springer-Verlag, Berlin, Lecture Notes in Phys. 344 ( 1989) 207-215. Zbl0991.49500 MR1036070 · Zbl 0991.49500
[6] J.M. Ball and F. Murat, Remarks on Chacon’s biting lemma. Proc. Amer. Math. Soc. 107 ( 1989) 655-663. Zbl0678.46023 MR984807 · Zbl 0678.46023
[7] H. Berliocchi and J.M. Lasry, Intégrands normales et mesures paramétrées en calcul des variations. Bull. Soc. Math. France 101 ( 1973) 129-184. Zbl0282.49041 MR344980 · Zbl 0282.49041
[8] A. Braides, A homogenization theorem for weakly almost periodic functionals, Rend. Accad. Naz. Sci. XL Mem. Sci. Fis. Natur. (5) 104 ( 1986) 261-281. Zbl0611.49007 MR879115 · Zbl 0611.49007
[9] A. Braides, Relaxation of functionals with constraints on the divergence. Ann. Univ. Ferrara Ser. VII (N.S.) 33 ( 1987) 157-177. Zbl0662.49004 MR958391 · Zbl 0662.49004
[10] A. Braides and A. Defranceschi, Homogenization of Multiple Integrals. Clarendon Press, Oxford ( 1998). Zbl0911.49010 MR1684713 · Zbl 0911.49010
[11] A. Braides, A. Defranceschi and E. Vitali, Homogenization of free discontinuity problems. Arch. Rational Mech. Anal. 135 ( 1996) 297-356. Zbl0924.35015 MR1423000 · Zbl 0924.35015
[12] G. Buttazzo, Semicontinuity, relaxation and integral epresentation problems in the Calculus of Variations. Longman, Harlow, Pitman Res. Notes Math. Ser. 207 ( 1989). Zbl0669.49005 · Zbl 0669.49005
[13] B. Dacorogna, Direct Methods in the Calculus of Variations. Springer-Verlag, Berlin ( 1989). Zbl0703.49001 MR990890 · Zbl 0703.49001
[14] B. Dacorogna, Weak Continuity and Weak Lower Semicontinuity for Nonlinear Functionals. Springer-Verlag, Berlin, Lecture Notes in Math. 922 ( 1982). Zbl0484.46041 MR658130 · Zbl 0484.46041
[15] G. Dal Maso, An Introduction to \Gamma -Convergence. Birkhäuser, Boston ( 1993). Zbl0816.49001 MR1201152 · Zbl 0816.49001
[16] G. Dal Maso, A. Defranceschi and E. Vitali (private communication).
[17] A. De Simone, Energy minimizers for large ferromagnetic bodies. Arch. Rational Mech. Anal. 125 ( 1993) 99-143. Zbl0811.49030 MR1245068 · Zbl 0811.49030
[18] I. Fonseca, The lower quasiconvex envelope of the stored energy function for an elastic crystal. J. Math. Pures Appl. 67 ( 1988) 175-195. Zbl0718.73075 MR949107 · Zbl 0718.73075
[19] I. Fonseca, G. Leoni, J. Malý and R. Paroni (in preparation).
[20] I. Fonseca and S. Müller, Quasiconvex integrands and lower semicontinuity in L1. SIAM J. Math. Anal. 23 ( 1992) 1081-1098. Zbl0764.49012 MR1177778 · Zbl 0764.49012
[21] I. Fonseca and S. Müller, Relaxation of quasiconvex functionals in BV(\Omega , \Bbb Rp) for integrands f (x, u, \Delta u). Arch. Rational Mech. Anal. 123 ( 1993) 1-49. Zbl0788.49039 MR1218685 · Zbl 0788.49039
[22] I. Fonseca and S. Müller, A-quasiconvexity, lower semicontinuity and Young measures. SIAM J. Math. Anal. 30 ( 1999) 1355-1390. Zbl0940.49014 MR1718306 · Zbl 0940.49014
[23] N. Fusco, Quasi-convessitá e semicontinuitá per integrali di ordine superiore. Ricerche Mat. 29 ( 1980) 307-323. Zbl0508.49012 · Zbl 0508.49012
[24] M. Giaquinta and G. Modica, Regularity results for some classes of higher order non linear elliptic systems. J. reine angew. Math. 311/312 ( 1979) 145-169. Zbl0409.35015 MR549962 · Zbl 0409.35015
[25] M. Guidorzi and L. Poggiolini, Lower semicontinuity for quasiconvex integrals of higher order. NoDEA Nonlinear Differential Equations Appl. 6 ( 1999) 227-246. Zbl0930.35059 MR1691445 · Zbl 0930.35059
[26] J. Kristensen, Finite functionals and Young measures generated by gradients of Sobolev functions. Mathematical Institute, Technical University of Denmark, Mat-Report No. 1994-34 ( 1994).
[27] P. Marcellini, Approximation of quasiconvex functions and semicontinuity of multiple integrals. Manuscripta Math. 51 ( 1985) 1-28. Zbl0573.49010 MR788671 · Zbl 0573.49010
[28] P. Marcellini and C. Sbordone, Semicontinuity problems in the Calculus of Variations. Nonlinear Anal. 4 ( 1980) 241-257. Zbl0537.49002 MR563807 · Zbl 0537.49002
[29] N.G. Meyers, Quasi-convexity and lower semi-continuity of multiple variational integrals of any order. Trans. Amer. Math. Soc. 119 ( 1965) 125-149. Zbl0166.38501 MR188838 · Zbl 0166.38501
[30] C.B. Morrey, Multiple Integrals in the calculus of Variations. Springer-Verlag, Berlin ( 1966). Zbl0142.38701 MR202511 · Zbl 0142.38701
[31] S. Müller, Variational models for microstructures and phase transitions, in Calculus of Variations and Geometric Evolution Problems, edited by S. Hildebrant et al. Springer-Verlag, Berlin, Lecture Notes in Math. 1713 ( 1999) 85-210. Zbl0968.74050 MR1731640 · Zbl 0968.74050
[32] F. Murat, Compacité par compensation : condition nécessaire et suffisante de continuité faible sous une hypothèse de rang constant. Ann. Scuola Norm. Sup. Pisa Cl. Sw. (4) 8 ( 1981) 68-102. Zbl0464.46034 MR616901 · Zbl 0464.46034
[33] P. Pedregal, Parametrized Measures and Variational Principles. Birkhäuser, Boston ( 1997). Zbl0879.49017 MR1452107 · Zbl 0879.49017
[34] L. Tartar, Compensated compactness and applications to partial differential equations, in Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, edited by R. Knops. Longman, Harlow, Pitman Res. Notes Math. Ser. 39 ( 1979) 136-212. Zbl0437.35004 MR584398 · Zbl 0437.35004
[35] L. Tartar, The compensated compactness method applied to systems of conservation laws, in Systems of Nonlinear Partial Differential Eq., edited by J.M. Ball. Riedel ( 1983). Zbl0536.35003 MR725524 · Zbl 0536.35003
[36] L. Tartar, Étude des oscillations dans les équations aux dérivées partielles nonlinéaires. Springer-Verlag, Berlin, Lectures Notes in Phys. 195 ( 1984) 384-412. Zbl0595.35012 MR755737 · Zbl 0595.35012
[37] L. Tartar, H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations. Proc. Roy. Soc. Edinburgh Sect. A 115 ( 1990) 193-230. Zbl0774.35008 MR1069518 · Zbl 0774.35008
[38] L. Tartar, On mathematical tools for studying partial differential equations of continuum physics: H-measures and Young measures, in Developments in Partial Differential Equations and Applications to Mathematical Physics, edited by Buttazzo, Galdi and Zanghirati. Plenum, New York ( 1991). Zbl0897.35010 MR1213932 · Zbl 0897.35010
[39] L. Tartar, Some remarks on separately convex functions, in Microstructure and Phase Transitions, edited by D. Kinderlehrer, R.D. James, M. Luskin and J.L. Ericksen. Springer-Verlag, IMA J. Math. Appl. 54 ( 1993) 191-204. Zbl0823.26008 MR1320538 · Zbl 0823.26008
[40] L.C. Young, Lectures on Calculus of Variations and Optimal Control Theory. W.B. Saunders ( 1969). Zbl0177.37801 MR259704 · Zbl 0177.37801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.