×

zbMATH — the first resource for mathematics

Which modal logic is the right one? (English) Zbl 0972.03018
Summary: The question, “Which modal logic is the right one for logical necessity?,” divides into two questions, one about model-theoretic validity, the other about proof-theoretic demonstrability. The arguments of Halldén and others that the right validity argument is S5, and the right demonstrability logic includes S4, are reviewed, and certain common objections are argued to be fallacious. A new argument, based on work of Słupecki and Bryll, is presented for the claim that the right demonstrability logic must be contained in S5, and a more speculative argument for the claim that it does not include S4.2 is also presented.

MSC:
03B45 Modal logic (including the logic of norms)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Birkhoff, G., “Rings of sets,” Duke Mathematical Journal , vol. 3 (1937), pp. 443–54. · Zbl 0017.19403 · doi:10.1215/S0012-7094-37-00334-X
[2] Boolos, G., “The logic of provability,” Cambridge University Press , Cambridge, 1993. · Zbl 0891.03004
[3] Burgess, J. P., “The completeness of intuitionistic propositional calculus for its intended interpretation,” Notre Dame Journal of Formal Logic , vol. 22 (1981), pp. 17– 28. · Zbl 0445.03030 · doi:10.1305/ndjfl/1093883336
[4] Carnap, R., “Modalities and quantification,” The Journal of Symbolic Logic , vol. 11 (1946), pp. 33–64. JSTOR: · Zbl 0063.00713 · doi:10.2307/2268610 · links.jstor.org
[5] Goranko, V., “Refutation systems in modal logic,” Studia Logica , vol. 53 (1994), pp. 299–324. · Zbl 0803.03005 · doi:10.1007/BF01054714
[6] Grzgorczyk, A., “Some relational systems and the associated topological spaces,” Fundamenta Mathematicæ , vol. 60 (1967), pp. 223–31. · Zbl 0207.29603 · eudml:213962
[7] Halldén, S., “A pragmatic approach to modal theory,” Acta Philosophical Fennica , vol. 16 (1963), pp. 53–64.
[8] Hintikka, J., “The modes of modality,” Acta Philosophica Fennica , vol. 16 (1963), pp. 65–82. · Zbl 0135.00509 · doi:10.1007/BF01433468
[9] Kripke, S. A., “Semantical considerations on modal logic,” Acta Philosophica Fennica , vol. 16 (1963), pp. 83–94. · Zbl 0131.00602 · doi:10.1109/TAC.1970.1099442
[10] Makinson, D., “How meaningful are modal operators?,” Australasian Journal of Philosophy , vol. 44 (1966), pp. 331–37.
[11] McKinsey, J. C. C., “A solution of the decision problem for the Lewis systems S2 and S4 , with an application to topology,” The Journal of Symbolic Logic , vol. 6 (1941), pp. 117–34. JSTOR: · Zbl 0063.03863 · doi:10.2307/2267105 · links.jstor.org
[12] McKinsey, J. C. C., “On the syntactical construction of modal logic,” The Journal of Symbolic Logic , vol. 10 (1945), pp. 83–96. JSTOR: · Zbl 0063.03865 · doi:10.2307/2267027 · links.jstor.org
[13] Scroggs, S. J., “Extensions of the Lewis system S5 ,” The Journal of Symbolic Logic , vol. 16 (1951), pp. 112–20. JSTOR: · Zbl 0043.00804 · doi:10.2307/2266683 · links.jstor.org
[14] Skura, T., “A Ł ukasiewicz-style refutation system for the modal logic S4 ,” Journal of Philosophical Logic , vol. 24 (1995), pp. 573–82. · Zbl 0847.03015 · doi:10.1007/BF01306967
[15] Sł upecki, J. and Bryll, G., “Proof of the L-decidability of Lewis system S5 ,” Studia Logica , vol. 32 (1973), pp. 99–105. · Zbl 0313.02012 · doi:10.1007/BF02123824
[16] Thomason, S. K., “A new representation of S5 ,” Notre Dame Journal of Formal Logic , vol. 14 (1973), pp. 281–87. · Zbl 0251.02027 · doi:10.1305/ndjfl/1093890907
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.