Kennedy, Stephen; Stafford, Matthew; Williams, R. F. A new Cayley-Hamilton theorem. (English) Zbl 0972.15004 Uhlenbeck, Karen (ed.), Global analysis in modern mathematics. Proceedings of the symposium in honor of Richard Palais’ sixtieth birthday, University of Maine, Orono, ME, USA, August 8-10, 1991, and at Brandeis University, Waltham, MA, USA, August 12, 1992. Houston, TX: Publish or Perish, Inc. 247-251 (1993). The authors show that, for the characteristic polynomial \(\chi\) based on a non-Abelian determinant the Cayley-Hamilton theorem holds, that is \(\chi_A(A)\) is always zero.For the entire collection see [Zbl 0920.00058]. Reviewer: Messoud Efendiev (Berlin) MSC: 15A24 Matrix equations and identities 15A15 Determinants, permanents, traces, other special matrix functions 15A18 Eigenvalues, singular values, and eigenvectors Keywords:matrix identity; characteristic polynomial; non-Abelian determinants; Cayley-Hamilton theorem PDFBibTeX XMLCite \textit{S. Kennedy} et al., in: Global analysis in modern mathematics. Proceedings of the symposium in honor of Richard Palais' sixtieth birthday, University of Maine, Orono, ME, USA, August 8--10, 1991, and at Brandeis University, Waltham, MA, USA, August 12, 1992. Houston, TX: Publish or Perish, Inc.. 247--251 (1993; Zbl 0972.15004)