Pavlov, A. I. Analytic noncontinuability of certain classes of power series. (English. Russian original) Zbl 0972.30002 Math. Notes 64, No. 3, 410-413 (1998); translation from Mat. Zametki 64, No. 3, 474-477 (1998). The author studies general classes of lacunary power series. Fix \(\alpha>0\) and \((m_{s}) _{s=1} ^\infty \subset\mathbb{N}\). Let \(\beta_{s} \) denote the fractional part of \(\alpha m_{s}\). Assume that \(\lim_{N \to+ \infty} (1/N)\# \{s\in{\mathbf N}: m_{s}\leq N\}>0\) and the sequence \((\beta _{s}) _{{s}=1} ^\infty\) is uniformly distributed in \([0,1]\). Let \(a_{s}: = f(\beta _{s})\), \(s\in\mathbb{N}\), where \(f\) is a Riemann-integrable function on \([0,1]\), whose Fourier coefficients can vanish only for a finite number of indices. Then the unit disc is the domain of existence of the function \(F(z)= \sum_{{s}1} ^\infty a_{s} z^{m_{s}}\). The same remains true if \(a_{s}:= \sum_{\nu=0}^{k} m_{s}^\nu p_\nu (\beta_{s})\), \(s\in \mathbb{N}\), where \(p_\nu\) is a nonconstant polynomial, \(\nu=0,\cdots,k\). Reviewer: Marek Jarnicki (Kraków) MSC: 30B40 Analytic continuation of functions of one complex variable 11J71 Distribution modulo one PDF BibTeX XML Cite \textit{A. I. Pavlov}, Math. Notes 64, No. 3, 410--413 (1998; Zbl 0972.30002); translation from Mat. Zametki 64, No. 3, 474--477 (1998) Full Text: DOI References: [1] L. J. Mordell,Proc. Amer. Math. Soc.,12, 522–526 (1961). · doi:10.1090/S0002-9939-1961-0125947-0 [2] L. J. Mordell,Notices Amer. Math. Soc.,11, 312 (1964). [3] A. I. Pavlov,Mat. Zametki [Math. Notes],55, No. 2, 102–108 (1994). [4] L. Bieberbach,Analytische Fortzetzung, Springer, Berlin-Göttingen-Heidelberg (1955). [5] L. Kuipers and H. Niederreiter,Uniform Distribution of Sequences, Interscience, New York (1974). · Zbl 0281.10001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.