Weak solutions of quasilinear problems with nonlinear boundary condition. (English) Zbl 0972.35038

Let \(\Omega\subset \mathbb{R}^N\) be an unbounded domain with (possible noncompact) smooth boundary \(\Gamma\) and \(n\) is the unit outward normal on \(\Gamma\). At certain (extensive) assumptions there is proved the existence of solutions for the boundary value problem \[ -\text{div}(a(x)|\nabla u|^{p- 2}\nabla u)= \lambda(1+|x|)^{\alpha_1}|u|^{p- 2}u+(1+|x|)^{\alpha_2}|u|^{q- 2}u\quad\text{in }\Omega, \]
\[ a(x)|\nabla u|^{p- 2}\nabla u\cdot n+ b(x)|u|^{p-2} u=g(x, u)\quad\text{on }\Gamma. \] Under more simple assumptions, the existence of eigensolutions for the eigenvalue problem \[ -\text{div}(a(x)|\nabla u|^{p- 2}\nabla u)= \lambda[(1+|x|^{\alpha_1})|p|^{p- 2} u+(1+|x|)^{\alpha_2}|u|^{q- 2}u]\quad\text{in }\Omega, \]
\[ a(x)|\nabla u|^{p- 2}\nabla u\cdot n+ b(x)|u|^{p- 2}u= \lambda g(x,u)\quad\text{on }\Gamma \] is proved.


35J65 Nonlinear boundary value problems for linear elliptic equations
35P30 Nonlinear eigenvalue problems and nonlinear spectral theory for PDEs
35J25 Boundary value problems for second-order elliptic equations
Full Text: DOI


[1] Allegretto, W.; Huang, Y.X., Eigenvalues of the indefinite weight p-Laplacian in weighted \(R\^{}\{N\}\) spaces, Funkc. ekvac., 38, 233-242, (1995) · Zbl 0922.35114
[2] Ambrosetti, A.; Rabinowitz, P.H., Dual variational methods in critical point theory and applications, J. funct. anal., 14, 349-381, (1973) · Zbl 0273.49063
[3] Anane, A., Simplicité et isolation de la première valeur propre du p-laplacien, C.R. acad. sci. Paris Sér. I math., 305, 725-728, (1987) · Zbl 0633.35061
[4] Azorero, J.P.G.; Alonso, I.P., Existence and uniqueness for the p-Laplacian: nonlinear eigenvalues, Commun. partial differential equations, 12, 1389-1430, (1987) · Zbl 0637.35069
[5] J.I. Diaz, Nonlinear partial differential equations and free boundaries. Elliptic Equations Research Notes in Mathematics, 106, Pitman, Boston, London, Melbourne, 1986.
[6] Drábek, P., Nonlinear eigenvalue problems for the p-Laplacian in \(R\^{}\{N\}\), Math. nachr., 173, 131-139, (1995) · Zbl 0856.35098
[7] Kawohl, B., On a family of torsional creep problems, J. reine angew. math., 410, 1-22, (1990) · Zbl 0701.35015
[8] Motreanu, D., A saddle point approach to nonlinear eigenvalue problems, Math. slovaca, 47, 463-477, (1997) · Zbl 0984.49026
[9] Motreanu, D.; Rădulescu, V., Existence theorems for some classes of boundary value problems involving the p-Laplacian, Panamer. math. J., 7, 2, 53-66, (1997) · Zbl 0871.35073
[10] Pélissier, M.-C.; Reynaud, M.L., Etude d’un modèle mathématique d’écoulement de glacier, C.R. acad. sci. Paris Sér. I math., 279, 531-534, (1974) · Zbl 0327.73085
[11] Pflüger, K., Existence and multiplicity of solutions to a p-Laplacian equation with nonlinear boundary condition, Electron. J. differential equations, 10, 1-13, (1998) · Zbl 0892.35063
[12] Pflüger, K., Compact traces in weighted Sobolev spaces, Analysis, 18, 65-83, (1998) · Zbl 0923.46038
[13] Showalter, R.E; Walkington, N.J., Diffusion of fluid in a fissured medium with microstructure, SIAM J. math. anal., 22, 1702-1722, (1991) · Zbl 0764.35053
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.