×

zbMATH — the first resource for mathematics

Synchronization of Rössler and Chen chaotic dynamical systems using active control. (English) Zbl 0972.37019
Summary: This letter presents chaos synchronization of two identical Rössler and Chen systems by using active control. The proposed technique is applied to achieve chaos synchronization for the Rössler and Chen dynamical systems. We demonstrate that a coupled Rössler and Chen systems can be synchronized. Numerical simulations are used to show the effectiveness of the proposed control method.

MSC:
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
Keywords:
coupled systems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Carroll, T.L.; Perora, L.M., Phys. rev. lett., 64, 821, (1990)
[2] Carroll, T.L.; Perora, L.M., IEEE trans. circuits syst., 38, 453, (1991)
[3] Chen, G.; Dong, X., IEEE trans. circuits syst., 40, 591, (1993)
[4] Chen, G.; Xie, Q., Int. J. bifurcation chaos, 6, 11, 2153, (1996)
[5] G. Chen, Control and Synchronization of Chaos, a Bibliography, Dept. of Elect. Eng., Univ. Houston, TX, 1997
[6] Kapitaniak, T., Chaos solitons fractals, 6, 3, 237, (1995)
[7] Halle, K.S.; Wu, C.W.; Itoh, M.; Chua, L.O., Int. J. bifurcation chaos, 3, 469, (1993)
[8] Kocarev, L.; Halle, K.S.; Eckert, K.; Chua, L.O.; Parlitz, U., Int. J. bifurcation chaos, 3, 479, (1993)
[9] Cuomo, K.M.; Oppenheim, A.V., Phys. rev. lett., 71, 65, (1993)
[10] Kocarev, L.; Parlitz, U., Phys. rev. lett., 74, 5028, (1995)
[11] Peng, J.H.; Ding, E.J.; Ding, M.; Yang, W., Phys. rev. lett., 76, 904, (1996)
[12] Rulkov, N.F., Phys. rev. E, 51, 980, (1995)
[13] Kocarev, L.; Parlitz, U., Phys. rev. lett., 76, 1816, (1996)
[14] Murali, K.; Lakshmanan, M., Phys. lett. A, 241, 303, (1998) · Zbl 0933.94023
[15] Bai, E.; Lonngrn, K.E., Chaos solitons fractals, 10, 9, 1571, (1998)
[16] Bai, E.; Lonngrn, K.E., Chaos solitons fractals, 11, 1041, (2000)
[17] Yu, X., Chaos solitons fractals, 8, 9, 1577, (1997)
[18] Chen, G., Int. J. bifurcation chaos, 9, 7, 1465, (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.