zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Strange attractors and chaos control in periodically forced complex Duffing’s oscillators. (English) Zbl 0972.37054
Summary: An interesting and challenging research subject in the field of nonlinear dynamics is the study of chaotic behavior in systems of more than two degrees of freedom. In this work we study fixed points, strange attractors, chaotic behavior and the problem of chaos control for complex Duffing’s oscillators which represent periodically forced systems of two degrees of freedom. We produce plots of Poincaré map and study the fixed points and strange attractors of our oscillators. The presence of chaotic behavior in these models is verified by the existence of positive maximal Lyapunov exponent. We also calculate the power spectrum and consider its implications regarding the properties of the dynamics. The problem of controlling chaos for these oscillators is studied using a method introduced by Pyragas (Phys. Lett. A 170 (1992) 421), which is based on the construction of a special form of a time-continuous perturbation. The study of coupled periodically forced oscillators is of interest to several fields of physics, mechanics and engineering. The connection of our oscillators to the nonlinear Schrödinger equation is discussed.

37L30Attractors and their dimensions, Lyapunov exponents
Full Text: DOI
[1] Holmes, C.; Holmes, P.: Second-order averaging and bifurcations to subharmonics in Duffing’s equation. J. sound vibration 78, No. 2, 161-174 (1981) · Zbl 0478.73028
[2] Holmes, P.: A nonlinear oscillator with a strange attractor. Phil. trans. Roy. soc. A 292, 419-448 (1979) · Zbl 0423.34049
[3] Tseng, W. Y.; Dugundji, J.: Nonlinear vibrations of a buckled beam under harmonic excitation. J. appl. Mech. 38, 467-476 (1971) · Zbl 0218.73059
[4] Moon, F. C.; Holmes, P.: A magnetoelastic strange attractor. J. sound vibration 65, 275-296 (1979) · Zbl 0405.73082
[5] Holmes, P.: Averaging and chaos in forced oscillations. SIAM J. Appl. math. 38, 65-80 (1980) · Zbl 0472.70024
[6] Hayashi, C.: Nonlinear oscillations in physical systems. (1964) · Zbl 0192.50605
[7] Moon, F. C.; Li, G. -X.: The fractal dimension of the two-well potential strange attractor. Physica D 17, 99-108 (1985) · Zbl 0588.58038
[8] Y. Udea, Explosion of strange attractors exhibited by Duffing’s equation, Ann. NY Acad. Sci. 357 (1980) 422--433.
[9] Schieve, W. C.; Horwitz, L. P.: Chaos in the classical relativistic mechanics of a damped Duffing-like driven system. Phys. lett. A 156, 140-146 (1991)
[10] Ashkenazy, Y.; Goren, C.; Horwitz, L. P.: Chaos of the relativistic parametrically forced van der Pol oscillator. Phys. lett. A 243, 195-204 (1998) · Zbl 0955.70508
[11] Horwitz, L. P.; Schieve, W. C.: Horseshoes in a relativistic Hamiltonian system. Phys. rev. A 46, 743-756 (1992) · Zbl 0814.70011
[12] Grattarola, M.; Torre, V.: Necessary and sufficient conditions for synchronization of nonlinear oscillators with a given class of coupling. IEEE trans. Circuits systems 24, No. 4, 209-215 (1977) · Zbl 0382.93022
[13] I.I. Bleckman, Synchronization of Dynamical Systems, Moscow, USSR: Nauka, 1971.
[14] If, F.; Berg, P.; Chistiansen, P. L.; Skovgaard, O.: Split-step spectral method for nonlinear Schrödinger equation with absorbing boundaries. J. comput. Phys. 72, 501-503 (1987) · Zbl 0631.65129
[15] Mahmoud, G. M.: Approximate solutions of a class of complex nonlinear dynamical systems. Physica A 253, 211-222 (1998)
[16] Mahmoud, G. M.; Rauh, A.; Mohamed, A. A.: On modulated complex nonlinear dynamical systems. IL nouvo cimento 114B, No. 1, 31-47 (1999)
[17] Mahmoud, G. M.; Aly, S. A.: Periodic attractors of complex damped nonlinear systems. Int. J. Non-linear mech. 35, 309-323 (2000) · Zbl 1068.70525
[18] Mahmoud, G. M.; Aly, S. A.: On periodic solutions of parametrically excited complex nonlinear dynamical systems. Physica A 278, 390-404 (2000)
[19] Romeiras, F. J.; Bondeson, A.; Ott, E.; Jr., T. M. Antonsen; Grebogi, C.: Quasiperiodic forcing and the observability of strange nonchaotic attractors. Phys. scripta 40, 442-444 (1989) · Zbl 1063.37520
[20] Pyragas, K.: Continuous control of chaos by self controlling feedback. Phys. lett. A 170, 421-428 (1992)
[21] Ott, E.; Grebogi, C.; Yorke, J. A.: Controlling chaos. Phys. rev. Lett. 64, 1196-1199 (1990) · Zbl 0964.37501
[22] Filipe, J.; Grebogi, C.; Ott, E.; Dayawansa, W. P.: Controlling chaotic dynamical systems. Physica D 58, 165-192 (1992) · Zbl 1194.37140
[23] Osipov, G. V.; Kozlov, A. K.; Shalfeev, V. P.: Impulse control of chaos in continuous systems. Phys. lett. A 247, 119-128 (1998)
[24] Nitsch, G.; Dresster, U.: Controlling chaotic dynamical systems using time delay coordinates. Physica D 58, 153-164 (1992)
[25] Breeden, J. L.: Open-loop control of nonlinear systems. Phys. lett. A 190, 264-272 (1994)
[26] Pyragas, K.: Predictable chaos in slightly perturbed unpredictable chaotic systems. Phys. lett. A 181, 203-210 (1993)
[27] Pyragas, K.; Tamaŝeviĉius, A.: Experimental control of chaos by delayed -- controlling feedback. Phys. lett. A 180, 99-102 (1993)
[28] Yagasaki, K.; Uozumi, T.: A new approach for controlling chaotic dynamical systems. Phys. lett. A 238, 349-357 (1998) · Zbl 0946.37023
[29] Wolf, A.; Swift, J.; Swinney, H.; Vastano, J.: Determining Lyapunov exponents from a time series. Physica D 16, 285-317 (1985) · Zbl 0585.58037
[30] Eckhardt, B.; Yao, D.: Local Lyapunov exponents in chaotic systems. Physica D 65, 100-108 (1993) · Zbl 0781.58024
[31] Zwillinger, D.: Handbook of differential equations. (1992) · Zbl 0741.34002
[32] G.M. Mahmoud, A.A. Mohamed, S.A. Aly, in preparation.