zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Periodical solution to the nonlinear dissipative equation for surface waves in a convecting liquid layer. (English) Zbl 0972.76546
Summary: An exact general periodical solution in terms of the Weierstrass elliptic function is obtained to the nonlinear dissipative ODE governing free surface travelling waves on a viscous convecting liquid layer. This solution may describe, in particular, the bounded periodical wave only in the presence of a nonlinear dissipative term in the equation studied.

76R05Forced convection (fluid mechanics)
76D33Waves in incompressible viscous fluids
Full Text: DOI
[1] Weidman, P. D.; Linde, H.; Velarde, M. G.: Phys. fluids A. 4, 921 (1992)
[2] Bezuglyi, B. A.; Maiorov, V. A.: Zh. naucchn. Prikl. fotogr. Kinematogr.. 26, 422 (1981)
[3] Benguria, R. D.; Depassier, M. C.: Phys. fluids A. 1, 1123 (1989) · Zbl 0688.76034
[4] Garazo, A. N.; Velarde, M. G.: Phys. fluids A. 3, 2295 (1991)
[5] Porubov, A. V.: J. phys. A. 26, L797 (1993) · Zbl 0803.35132
[6] Kraenkel, R. A.: Phys. rev. A. 45, 838 (1992)
[7] Whitham, G. B.: Linear and nonlinear waves. (1974) · Zbl 0373.76001
[8] Porubov, A. V.: Free surface nonlinear waves on a viscous inhomogeneous liquid layer. Ph.d. thesis (1995)
[9] Lou, S.: J. phys. A. 24, L587 (1991)
[10] Chow, K. W.: J. math. Phys.. 36, 4125 (1995)
[11] Nakamura, A.: J. phys. Soc. Japan. 47, 1701 (1979)
[12] Kostov, N. A.; Uzunov, I. M.: Opt. commun.. 89, 389 (1992)
[13] Samsonov, A. M.: Appl. anal.. 57, 85 (1995)
[14] Whittaker, E. T.; Watson, G. N.: A course of modern analysis. (1927) · Zbl 53.0180.04
[15] Weiss, J.; Tabor, M.; Carnevale, G.: J. math. Phys.. 24, 522 (1983)