×

zbMATH — the first resource for mathematics

Hamilton-Jacobi equations and brane associated Lagrangians. (English) Zbl 0972.81146
Summary: This article seeks to relate a recent proposal for the association of a covariant Field Theory with a string or brane Lagrangian to the Hamilton-Jacobi formalism for strings and branes. It turns out that since in this special case, the Hamiltonian depends only upon the momenta of the Jacobi fields and not the fields themselves, it is the same as a Lagrangian, subject to a constancy constraint. We find that the associated Lagrangians for strings or branes have a covariant description in terms of the square root of the same Lagrangian. If the Hamilton-Jacobi function is zero, rather than a constant, then it is in in one dimension lower, reminiscent of the “holographic” idea. In the second part of the paper, we discuss properties of these Lagrangians, which lead to what we have called “Universal Field Equations”, characteristic of covariant equations of motion.

MSC:
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Baker, L.M.; Fairlie, D.B., Companion equations for branes (1999), J. math. phys., 41, 4284-4292, (2000) · Zbl 0973.81107
[2] Hosotani, Y., Phys. rev. lett., 47, 399, (1981)
[3] Morris, T.R., From first to second quantized string theory, Phys. lett. B, 202, 222, (1988)
[4] Gee, D.L.; Morris, T.R.; Gee, D.L.; Morris, T.R.; Gee, D.L.; Morris, T.R.; Gee, D.L.; Morris, T.R., Gauge fixing and quantization, Nucl. phys. B, Nucl. phys. B, Nucl. phys. B, Nucl. phys. B, 331, 694, (1990)
[5] Born, M.; Infeld, L., Proc. R. soc. A, 144, 425, (1934)
[6] Dirac, P.A.M., An extensible model of the electron, Proc. R. soc. A, 268, 57-67, (1962) · Zbl 0111.43702
[7] Hosotani, Y.; Nakayama, R., The hamilton – jacobi equations for strings and p-branes, Mod. phys. lett. A, 14, 1983, (1999)
[8] Rund, H., The hamilton – jacobi theory in the calculus of variations, (1966), Van Nostrand · Zbl 0141.10602
[9] Nambu, Y., Hamilton – jacobi formalism for strings, Phys. lett. B, 92, 327-330, (1980)
[10] Kastrup, H.A.; Kastrup, H.A.; Nambu, Y.; Kastrup, H.A.; Rinke, M., Canonical theories of Lagrangian dynamical systems in physics, Phys. rep., Phys. lett. B, Phys. lett. B, Phys. lett. B, 105, 101-167, (1981)
[11] Carathéodory, C., Math. ann., 85, 78-88, (1922)
[12] Velte, M., Mat. zeitschrift, 60, 367-383, (1954)
[13] Schild, A., Phys. rev. D, 16, 1722, (1977)
[14] Eguchi, T., Phys. rev. lett., 44, 126, (1980)
[15] ’t Hooft, G.; ’t Hooft, G., The holographic principle, (2000) · Zbl 1185.83014
[16] Susskind, L.; Bigatti, D.; Susskind, L., Tasi lectures on the holographic principle, J. math. phys., 36, 6377-6396, (1995), (2000) · Zbl 0850.00013
[17] Fairlie, D.B., Dirac – born – infeld equations, Phys. lett. B, 456, 141-146, (1999) · Zbl 0987.81076
[18] Fairlie, D.B.; Govaerts, J.; Morozov, A., Universal field equations with covariant solutions, Nucl. phys. B, 373, 214-232, (1992)
[19] Fairlie, D.B.; Govaerts, J., Euler hierarchies and universal equations, J. math. phys., 33, 3543-3566, (1992) · Zbl 0764.58037
[20] Fairlie, D.B., Integrable systems in higher dimensions, (), 309-327 · Zbl 0869.35090
[21] Fairlie, D.B., Universal field equations and Euler hierarchies, (), 63-70 · Zbl 0764.58037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.