×

Generalized Langevin equation for nonequilibrium systems. (English) Zbl 0972.82060

Summary: We derive a generalized Langevin equation (GLE) for the evolution of an arbitrary phase variable in a classical fluid that is initially at equilibrium and is subsequently subjected to an external field and a thermostat of the type used in nonequilibrium molecular dynamics computer simulations. The nonequilibrium steady state GLE is shown to have the same form as the equilibrium GLE at long times. We use our generalized Langevin equation to derive a simple Langevin equation for the motion of a single heavy Brownian particle in a solvent under steady state planar shear.

MSC:

82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Langevin, P.; Acad, C. R., Science (Paris), 146, 530 (1908)
[2] Albers, J.; Deutch, J. M.; Oppenheim, I., J. Chem. Phys., 54, 3541 (1971)
[3] Deutch, J. M.; Oppenheim, I., J. Chem. Phys., 54, 3547 (1971)
[4] Mori, H., Prog. Theor. Phys., 33, 423 (1965) · Zbl 0127.45002
[5] Mori, H., Prog. Theor. Phys., 34, 399 (1965)
[6] R. Zwanzig, Lectures in Theoretical Physics (Boulder), Vol. III, Wiley, New York, 1961, p. 135.; R. Zwanzig, Lectures in Theoretical Physics (Boulder), Vol. III, Wiley, New York, 1961, p. 135.
[7] Kawasaki, K.; Gunton, J. D., Phys. Rev. A, 8, 2048 (1973)
[8] Zwanzig, R., Suppl. Prog. Theor. Phys., 64, 74 (1978)
[9] Ichiyanagi, M., J. Phys. Soc. Japan, 62, 1167 (1993) · Zbl 0972.82555
[10] Evans, D. J.; Morriss, G. P., Statistical Mechanics of Nonequilibrium Liquids (1990), Academic Press: Academic Press London · Zbl 1145.82301
[11] Tolman, R. C., The Principles of Statistical Mechanics (1979), Dover: Dover New York
[12] McLennan, J. A., Introduction to Nonequilibrium Statistical Mechanics (1989), Prentice Hall: Prentice Hall Englewood Cliffs · Zbl 0747.73002
[13] Yamada, T.; Kawasaki, K., Prog. Theor. Phys., 38, 1031 (1967)
[14] Morriss, G. P.; Evans, D. J., Mol. Phys., 54, 629 (1985)
[15] B.J. Berne, Projection operator techniques in the theory of fluctuations in Statistical Mechanics. Part B: Time-dependent Processes, in: B.J. Berne (Ed.), Modern Theoretical Chemistry, Plenum Press, New York, 1977, Vol. 6, Ch. 5, pp. 233-257.; B.J. Berne, Projection operator techniques in the theory of fluctuations in Statistical Mechanics. Part B: Time-dependent Processes, in: B.J. Berne (Ed.), Modern Theoretical Chemistry, Plenum Press, New York, 1977, Vol. 6, Ch. 5, pp. 233-257.
[16] Berne, B. J.; Pecora, R., Dynamic Light Scattering (1976), Wiley: Wiley New York
[17] Shea, J.-E.; Oppenheim, I., J. Phys. Chem., 100, 19035 (1996)
[18] Dyson, F. J., Phys. Rev., 75, 486 (1949) · Zbl 0032.23702
[19] Sarman, S.; Evans, D. J.; Cummings, P. T., J. Chem. Phys., 95, 8675 (1991)
[20] Foister, R. T.; van der Ven, T. G.M., J. Fluid Mech., 96, 105 (1980) · Zbl 0465.76047
[21] San Miguel, M.; Sancho, J. M., Physica A, 99, 357 (1979)
[22] Miyazaki, K.; Bedeaux, D., Physica A, 217, 53 (1995)
[23] Hansen, J.-P.; McDonald, I. R., Theory of Simple Liquids (1986), Academic Press: Academic Press London
[24] Dufty, J. W.; Rubi, J. M., Phys. Rev. A, 36, 222 (1987)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.