Blowup of small data solutions for a class of quasilinear wave equations in two space dimensions. II. (English) Zbl 0973.35135

From the introduction: This work is a continuation of our previous work [Ann. Math. (2) 149, No. 1, 97–127 (1999; Zbl 1080.35043)]. We consider in both quasilinear wave equations in \(\mathbb R^{2+1}\), \[ \partial^2_t u-\Delta_x u+ \sum_{0\leq i,j,k\leq 2} g^k_{ij}\partial_k u\partial^2_{ij} u=0,\tag{1} \] where \(x_0= t\), \(x= (x_1,x_2)\), \(g^k_{ij}= g^k_{ji}\). We assume that the Cauchy data are \(C^\infty\) and small, \(u(x,0)= \varepsilon u^0_1+ \varepsilon^2 u^0_2+\cdots\), \(\partial_t u(x,0)= \varepsilon u^1_1+ \varepsilon^2 u^1_2+\cdots\), and supported in a fixed ball of radius \(M\).
In our previous work [loc. cit.], we were able to prove actual blowup only for the special example of (1), \((\partial^2_t- \Delta)u= (\partial_t u)(\partial^2_t u)\).
In the present work, we prove that actual blowup takes place at the suggested time for a general equation (1). The only assumption we need is a “generic” condition on the Cauchy data.


35L70 Second-order nonlinear hyperbolic equations
35B05 Oscillation, zeros of solutions, mean value theorems, etc. in context of PDEs


Zbl 1080.35043
Full Text: DOI


[1] Alinhac, S., Existence d’ondes de raréfaction pour des systèmes quasi-linéaires hyperboliques multidimensionnels.Comm. Partial Differential Equations, 14 (1989), 173–230. · Zbl 0692.35063
[2] –, Approximation près du temps d’explosion des solutions d’équations d’ondes quasilinéaires en dimension deux.Siam J. Math. Anal., 26 (1995), 529–565. · Zbl 0870.35063
[3] –, Temps de vie et comportement explosif des solutions d’équations d’ondes quasi-linéaires en dimension deux, II.Duke Math. J., 73 (1994), 543–560. · Zbl 0844.35102
[4] –, Explosion géométrique pour des systèmes quasi-linéaires.Amer. J. Math., 117 (1995), 987–1017. · Zbl 0840.35060
[5] –, Explosion des solutions d’une équation d’ondes quasi-linéaire en deux dimensions d’espace.Comm. Partial Differential Equations, 21 (1996), 923–969. · Zbl 0858.35082
[6] Alinhac, S., Blowup of small data solutions for a quasilinear wave equation in two space dimensions. To appear inAnn. of Math. · Zbl 1080.35043
[7] –,Blowup for Nonlinear Hyperbolic Equations, Progr. Nonlinear Differential Equations Appl., 17. Birkhäuser Boston, Boston, MA, 1995.
[8] Alinhac, S., Stability of geometric blowup. Preprint, Université Paris-Sud, 1997. · Zbl 0896.35087
[9] Alinhac, S. &Gérard, P.,Opérateurs pseudo-différentiels et théorème de Nash-Moser. InterEditions, Paris, 1991.
[10] Hörmander, L., The lifespan of classical solutions of nonlinear hyperbolic equations, inPseudodifferential Operators (Oberwolfach, 1986), pp. 214–280. Lecture Notes in Math., 256. Springer-Verlag, Berlin-New York, 1986.
[11] –,Lectures on Nonlinear Hyperbolic Differential Equations, Math. Appl., 26. Springer-Verlag, Berlin, 1997. · Zbl 0881.35001
[12] John, F.,Nonlinear Wave Equations, Formation of Singularities. Univ. Lecture Ser., 2. Amer. Math. Soc., Providence, RI, 1990.
[13] Klainerman, S., Uniform decay estimates and the Lorentz invariance of the classical wave equation.Comm. Pure Appl. Math., 38 (1985), 321–332. · Zbl 0635.35059
[14] –, The null condition and global existence to nonlinear wave equations, inNonlinear Systems of Partial Differential Equations in Applied mathematics, Part 1 (Santa Fe, NM, 1984), pp. 293–326. Lectures in Appl. Math., 23. Amer. Math. Soc., Providence, RI, 1986.
[15] Majda, A.,Compressible Fluid Flow and Systems of Gonservation Laws in Several Space Variables. Appl. Math. Sci., 53. Springer-Verlag, New York-Berlin, 1984. · Zbl 0537.76001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.