zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Anticipated synchronization in coupled chaotic maps with delays. (English) Zbl 0973.37033
Summary: We study the synchronization of two chaotic maps with unidirectional (master-slave) coupling. Both maps have an intrinsic delay $n_1$, and coupling acts with a delay $n_2$. Depending on the sign of the difference $n_1-n_2$, the slave map can synchronize to a future or a past state of the master system. The stability properties of the synchronized state are studied analytically, and we find that they are independent of the coupling delay $n_2$. These results are compared with numerical simulations of a delayed map that arises from discretization of the Ikeda delay-differential equation. We show that the critical value of the coupling strength above which synchronization is stable becomes independent of the delay $n_1$ for large delays.

37H99Random dynamical systems
37D45Strange attractors, chaotic dynamics
Full Text: DOI
[1] Ikeda, K.; Matsumoto, K.: Physica D. 29, 223-235 (1987)
[2] Kim, S.; Park, S. H.; Ryu, C. S.: Phys. rev. Lett.. 79, 2911-2914 (1997)
[3] Mensour, B.; Longtin, A.: Phys. lett. A. 205, 18-24 (1995)
[4] Foss, J.; Longtin, A.; Mensour, B.: J. milton, phys. Rev. lett.. 76, 708-711 (1996)
[5] Mensour, B.; Longtin, A.: Phys. rev. E. 58, 410-422 (1998)
[6] Bunner, M. J.; Just, W.: Phys. rev. E. 58, R4072-R4075 (1998)
[7] He, R.; Vaidya, P. G.: Phys. rev. E. 59, 4048-4051 (1999)
[8] Perez, G.; Cerdeira, H. A.: Phys. rev. Lett.. 74, 1970-1973 (1995)
[9] Farmer, J. D.: Physica D. 4, 366-393 (1982)
[10] Zhou, C.; Lai, C. -H.: Phys. rev. E. 60, 320-323 (1999)
[11] Choi, M. Y.; Kim, H. J.; Kim, D.; Hong, H.: Phys. rev. E. 61, 371-381 (2000)
[12] Zanette, D.: Phys. rev. E. 62, 3167-3172 (2000)
[13] Reddy, D. V. Raman; Sen, A.; Johnston, G. L.: Phys. rev. Lett.. 85, 3381-3384 (2000)
[14] Voss, H. U.: Phys. rev. E. 61, 5115-5119 (2000)
[15] Voss, H. U.: Phys. lett. A. 279, 207-214 (2001) · Zbl 0972.78005
[16] Masoller, C.: Phys. rev. Lett.. 86, 2782-2785 (2001)
[17] Ikeda, K.; Daido, H.; Akimoto, O.: Phys. rev. Lett.. 45, 709-712 (1980)
[18] P. Mandel, Theoretical Problems in Cavity Nonlinear Optics, Cambridge University Press, New York, 1997, and references therein.
[19] Rosenblum, M. G.; Pikovsky, A. S.; Kurths, J.: Phys. rev. Lett.. 78, 4193-4196 (1997)
[20] Le Berre, M.; Ressayre, E.; Tallet, A.; Gibbs, H. M.: Phys. rev. Lett.. 56, 274-277 (1986)
[21] Masoller, C.: Chaos. 7, 455-462 (1997)