Medina, Rigoberto; Pinto, Manuel Dichotomies and asymptotic equivalence of nonlinear difference systems. (English) Zbl 0973.39008 J. Difference Equ. Appl. 5, No. 3, 287-303 (1999). Summary: Some asymptotic formulae for the solutions of quasilinear systems are obtained. Several dichotomies for the linear part are considered. Moreover, one result for constant multiple eigenvalues is presented. Cited in 4 Documents MSC: 39A11 Stability of difference equations (MSC2000) Keywords:dichotomies; Schauder’s theorem; asymptotic formulae; quasilinear difference system; linear difference system PDF BibTeX XML Cite \textit{R. Medina} and \textit{M. Pinto}, J. Difference Equ. Appl. 5, No. 3, 287--303 (1999; Zbl 0973.39008) Full Text: DOI OpenURL References: [1] Agarwal R. P., Difference Equations and Inequalities (1992) · Zbl 0925.39001 [2] Benzaid Z., Studies in Applied Mathematics 77 pp 195– (1987) [3] Palmer K. J., In Dynamics Reported 1 pp 265– (1988) [4] DOI: 10.1016/0022-0396(69)90008-4 · Zbl 0185.16601 [5] Coddington E., Theory of Ordinary Differential Equations (1955) · Zbl 0064.33002 [6] DOI: 10.1090/S0002-9947-1964-0156122-9 [7] Naulin, R. and Pinto, M. Projections for dichotomies in linear differential equations. (submitted) · Zbl 0899.34008 [8] Coppel W.A., Lecture Notes in Mathematics 629 (1978) · Zbl 0376.34001 [9] Ghizzetti A., Rend. Mat. e Appl. 8 pp 28– (1940) [10] DOI: 10.1016/0898-1221(94)00114-6 · Zbl 0806.39004 [11] Kelley W.G., Difference Equations, An Introduction with Applications (1991) · Zbl 0733.39001 [12] Lakshmikantham V., Theory of Difference Equations with Applications in Numerical Analysis (1988) [13] DOI: 10.1016/0022-247X(83)90012-4 · Zbl 0506.39006 [14] DOI: 10.1016/0022-247X(92)90054-H · Zbl 0752.39002 [15] DOI: 10.1016/0362-546X(92)90119-Y · Zbl 0773.39003 [16] Medina R., Internat. J. Math. Sci. 19 (1994) [17] DOI: 10.1093/imamat/14.3.335 [18] DOI: 10.1016/0362-546X(93)90157-N · Zbl 0774.39001 [19] Gel’fond A., Izv. Akad. Nauk. SSSR SER. Mat. 17 pp 83– (1953) [20] DOI: 10.1215/S0012-7094-48-01514-2 · Zbl 0040.19402 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.