Using SeDuMi 1. 02, a MATLAB toolbox for optimization over symmetric cones. (English) Zbl 0973.90526

Summary: SeDuMi is an add-on for MATLAB, which lets you solve optimization problems with linear, quadratic and semidefiniteness constraints. It is possible to have complex valued data and variables in SeDuMi. Moreover, large scale optimization problems are solved efficiently, by exploiting sparsity. This paper describes how to work with this toolbox.


90C22 Semidefinite programming
90C46 Optimality conditions and duality in mathematical programming
65Y15 Packaged methods for numerical algorithms


Sp; SDPT3; SDPHA; SeDuMi; SDPA; CSDP; Matlab
Full Text: DOI


[1] Alizadeh F., SDP-Pack user’s guide (1997)
[2] Borchers, B. 1997. ”CSDP, a C library for semidefinite programming”. USA: New Mexico Tech Mathematics Faculty. Technical report · Zbl 0973.90524
[3] Brixius, N. and Potra, F. A. 1998. ”Sdpha: A MATLAB implementation of homogeneous interior-point algorithms for semidefinite programming”. Iowa City, USA: Department of Computer Science, University of Iowa. Technical report · Zbl 0973.90525
[4] Davidson, T. N., Luo, Z.Q and Sturm, J. F. 1998. ”A (primal form of the) positive real lemma for FIR systems”. Hamilton, Canada: Communications Research Laboratory, McMaster University. Technical report, To appear
[5] Deng, S. and Hu, H. 1996. ”Computable error bounds for semidefinite programming.”. DeKalb, USA: Department of Mathematical Sciences, Northern Illinois University. Technical report · Zbl 0944.90057
[6] Dussy, S. and El Ghaoui, L. 1997. ”Multiobjective robust control toolbox for LMI-based control”. Paris, France: Laboratoire de Mathématiques Appliquées, ENSTA. Technical report · Zbl 0875.93161
[7] DOI: 10.1137/S0895479896298130 · Zbl 0891.65039 · doi:10.1137/S0895479896298130
[8] El Ghaoui L., LMITOOL: A front-end for LMI optimization, user’s guide
[9] Faraut J., Analysis on Symmetric Cones (1994) · Zbl 0841.43002
[10] Fujisawa K., Mathematical Programming 79 pp 235– (1997) · Zbl 0953.90043
[11] Fujisawa, K., Kojima, M. and Nakata, K. 1998. ”SDPA (semidefinite programming algorithm) user’s manual–version 4.10.”. Vol. 152, Oh-Okayama, Meguro-ku, Tokyo, Japan: Tokyo Institute of Technology, Dept. of Information Sciences. Technical report, 2-12-1
[12] Goldfarb, D. and Scheinberg, K. 1997. ”On parametric semidefinite programming”. New York, USA: Columbia University, Department of IEOR. Technical report · Zbl 0956.90028
[13] Lobo M. S., Linear Algebra and Applications. (1997)
[14] Luo, Z.Q, Sturm, J. F. and Zhang, S. ”Duality and self-duality for conic convex programming”. Rotterdam, The Netherlands: Econometric Institute, Erasmus University Rotterdam. Technical Report 9620/A
[15] Luo, Z.Q., Sturm, J. F. and Zhang, S. 1997. ”Duality results for conic convex programming”. Rotterdam, The Netherlands: Econometric Institute, Erasmus University Rotterdam. Technical Report 9719/A
[16] DOI: 10.1137/0802028 · Zbl 0773.90047 · doi:10.1137/0802028
[17] DOI: 10.1007/BF01585180 · Zbl 0803.90089 · doi:10.1007/BF01585180
[18] Monteiro R. D. C., Mathematical Programming 72 pp 65– (1996)
[19] DOI: 10.1287/moor.22.1.1 · Zbl 0871.90064 · doi:10.1287/moor.22.1.1
[20] Roos C., Theory and algorithms for linear optimization. An interior point approach (1997) · Zbl 0954.65041
[21] Ross, A. M. 1998. ”Optimization over cones: SDPpack versus SeDuMi”. Department IEOR, University of California at Berkeley. Technical Report 1998-10-22
[22] Sturm J. F., Primal–Dual Interior Point Approach to Semidefinite Programming, Tinbergen Institute Research Series 156 (1997)
[23] DOI: 10.1287/moor.22.2.408 · Zbl 0883.90093 · doi:10.1287/moor.22.2.408
[24] Todd M. J., Mathematical Programming 81 pp 1– (1998)
[25] Toh, K. C., Todd, M. J. and Tdütüncü, R. H. 1996. ”SDPT3–a MATLAB package for semidefinite programming”. Ithaca, USA: School of Operations Research and Industrial Engineering, Cornell University. Technical report
[26] Vandenberghe L., SP: Software for semidefinite programming. (1994)
[27] Wu, S., Luo, Z.Q and Wong, K. 1997. ”Direction finding for coherent sources via Toeplitz approximation”. Hamilton, Canada: Communications Research Laboratory, McMaster University. Technical report
[28] DOI: 10.1287/moor.19.1.53 · Zbl 0799.90087 · doi:10.1287/moor.19.1.53
[29] Zhang, Y. 1997. ”Solving large–scale linear programs by interior–point methods under the MATLAB environment”. Houstan, USA: Department of Computational and Applied Mathematics, Rice University. Technical report
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.