zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Observability inequalities for shallow shells. (English) Zbl 0974.35013
The author established some observability inequalities from boundary for a general shallow shell with a middle surface of any shape. The middle surface is viewed as a Riemann manifold with the induced metric in $\bbfR^3$. With the assumption (H2) be established an estimate for the model proposed in the case that no boundary conditions are improved. Using all the above he established continuous observability estimates for two kinds of boundary conditions: Dirichlet and Neumann, which have a physical meaning with an explicit observability time and hence, by duality, exact controllability results. Finally, several examples of the middle surface that verify the main assumption (H2) are considered.

35B37PDE in connection with control problems (MSC2000)
35L35Higher order hyperbolic equations, boundary value problems
35L55Higher order hyperbolic systems
35L75Nonlinear hyperbolic PDE of higher $(>2)$ order
74K25Shells (solid mechanics)
49J20Optimal control problems with PDE (existence)
49K10Free problems in several independent variables (optimality conditions)
Full Text: DOI