×

zbMATH — the first resource for mathematics

Inclusions of von Neumann algebras, and quantum groupoïds. (English) Zbl 0974.46055
Authors’ abstract: From a depth 2 inclusion of von Neumann algebras \(M_0\subset M_1\), which an operator-valued weight verifying a regularity condition, we construct a pseudo-multiplicative unitary, which leads to two structures of Hopf bimodules, dual to each other. Moreover, we construct an action of one of these structures on the algebra \(M_1\) such that \(M_0\) is the fixed point subalgebra, the algebra \(M_2\) given by the basic construction being then isomorphic to the crossed-product. We construct on \(M_2\) an action of the other structure, which can be considered as the dual action. If the inclusion \(M_0\subset M_1\) is irreducible, we recover quantum groups, as proved in former papers. This construction generalizes the situation which occurs for actions (or co-actions) of groupoïds. Other examples of “quantum groupoïds” are given.

MSC:
46L89 Other “noncommutative” mathematics based on \(C^*\)-algebra theory
16W30 Hopf algebras (associative rings and algebras) (MSC2000)
46N50 Applications of functional analysis in quantum physics
46L60 Applications of selfadjoint operator algebras to physics
46L10 General theory of von Neumann algebras
81R50 Quantum groups and related algebraic methods applied to problems in quantum theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Baaj, S.; Skandalis, G., Unitaires multiplicatifs et dualité pour LES produits croisés de \(C\)*-algèbres, Ann. sci. ENS, 26, 425-488, (1993) · Zbl 0804.46078
[2] Böhm, G.; Szlachányi, K., A coassociative \(C\)*-quantum group with non integral dimensions, Lett. math. phys., 38, 437-456, (1996) · Zbl 0872.16022
[3] Böhm, G.; Szlachányi, K., Weak \(C\)*-Hopf algebras: the coassociative symmetry of non-integral dimensions, in quantum groups and quantum spaces, Banach center publications, 40, 9-19, (1997) · Zbl 0894.16018
[4] Connes, A., On the spatial theory of von Neumann algebras, J. funct. analysis, 35, 153-164, (1980) · Zbl 0443.46042
[5] Connes, A., Non commutative geometry, (1994), Academic Press · Zbl 0933.46069
[6] Connes, A.; Skandalis, G., The longitudinal index theorem for foliations, Pub. R.I.M.S., 20, 1139-1183, (1984) · Zbl 0575.58030
[7] Enock, M., Inclusions irréductibles de facteurs et unitaires multiplicatifs II, J. funct. analysis, 154, 67-109, (1998) · Zbl 0921.46065
[8] Enock, M., Sous-facteurs intermédiaires et groupes quantiques mesurés, J. operator theory, 42, 305-330, (1999) · Zbl 0993.46031
[9] M. Enock, Inclusions of von Neumann algebras, and quantum groupoı́ds II, tirage préliminaire Nov. 99.
[10] Enock, M.; Nest, R., Inclusions of factors, multiplicative unitaries and Kac algebras, J. funct. analysis, 137, 466-543, (1996) · Zbl 0847.22003
[11] Enock, M.; Schwartz, J.-M., Kac algebras and duality of locally compact groups, (1989), Springer-Verlag Berlin
[12] Enock, M.; Vaınerman, L., Deformation of a Kac algebra by an abelian subgroup, Comm. math. phys., 178, 571-596, (1996) · Zbl 0876.46042
[13] Goodman, F.M.; de la Harpe, P.; Jones, V.F.R., Coxeter graphs and towers of algebras, MSRI publ. 14, (1989), Springer
[14] Hilsum, M.; Skandalis, G., Stabilité des \(C\)*-algèbres de feuilletages, Ann. inst. Fourier, 33, 201-208, (1983) · Zbl 0505.46043
[15] Jones, V.; Takesaki, M., Actions of compact abelian groups on semi-finite injective factors, Acta math., 153, 213-258, (1984) · Zbl 0588.46042
[16] Masuda, T., Groupoid dynamical systems and crossed product I; the case of W**-dynamical systems, Publ. R.I.M.S. Kyoto, 20, 929-957, (1984) · Zbl 0584.46055
[17] Masuda, T.; Nakagami, Y., A von Neumann algebra framework for the duality of the quantum groups, Publ. RIMS Kyoto, 30, 799-850, (1994) · Zbl 0839.46055
[18] Monthubert, B.; Pierrot, F., Indice analytique et groupoı̈des de Lie, C.R. amer. math. soc. Paris, 325, 193-198, (1997) · Zbl 0955.22004
[19] Pimsner, M.; Popa, S., Iterating the basic construction, Trans. amer. math. soc., 310, 127-133, (1988) · Zbl 0706.46047
[20] J. Renault, A Groupoid Approach to \(C\)*-Algebras, Lecture Notes in Math, Vol, 793, Springer-Verlag.
[21] Renault, J., The Fourier algebra of a measured groupoid and its multipliers, J. funct. analysis, 145, 455-490, (1997) · Zbl 0874.43003
[22] J.-L. Sauvageot, Produit tensoriel de Z-modules et applications, in Operator Algebras and their Connections with Topology and Ergodic Theory, Proceedings Buşteni, Romania, 1983, Lecture Notes in Math., Vol. 1132, pp. 468-485, Springer-Verlag.
[23] Sauvageot, J.-L., Sur le produit tensoriel relatif d’espaces de Hilbert, J. operator theory, 9, 237-352, (1983) · Zbl 0517.46050
[24] Stratila, Ş., Modular theory in operator algebras, (1981), Abacus Press Turnbridge Wells · Zbl 0504.46043
[25] Szlachányi, K., Weak Hopf algebras, () · Zbl 1098.16504
[26] Vallin, J.-M., Bimodules de Hopf et poids opératoriels de Haar, J. operator theory, 35, 39-65, (1996) · Zbl 0849.22002
[27] J.-M. Vallin, Unitaire pseudo-multiplicatif associé à un groupoı̈de; applications à la moyennabilité, à parıtre au, J. Operator Theory.
[28] J.-M. Vallin, Finite Dimensional Quantum Groupoı̈ds, in preparation.
[29] Woronowicz, S.L., Tannaka – krein duality for compact matrix pseudogroups. twisted SU(N) group, Invent. math., 93, 35-76, (1988) · Zbl 0664.58044
[30] Woronowicz, S.L., Compact quantum group, Symétries quantiques (LES houches 1995),, (1998), North-Holland Amsterdam, p. 845-884 · Zbl 0997.46045
[31] S. L. Woronowicz, From multiplicative unitaries to quantum groups, preprint 1995. · Zbl 0876.46044
[32] Yamanouchi, T., Duality for actions and coactions of measured groupoids on von Neumann algebras, Mem. amer. math. soc., 101, 1-109, (1993) · Zbl 0822.46070
[33] Yamanouchi, T., Crossed products by groupoid actions and their smooth flow of weights, Publ. RIMS Kyoto, 28, 535-578, (1994) · Zbl 0824.46080
[34] Yamanouchi, T., Dual weights on crossed products by groupoid actions, Publ. RIMS Kyoto, 28, 653-678, (1994) · Zbl 0824.46081
[35] Yamanouchi, T., Duality for generalized Kac algebras and a characterization on finite groupoids algebras, J. algebra, 163, 9-50, (1994) · Zbl 0830.46047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.