zbMATH — the first resource for mathematics

Symplectic fillability of tight contact structures on torus bundles. (English) Zbl 0974.53061
A manifold \(M\) with contact structure \(\xi\) is weakly symplectically fillable if \(M = \partial W\), where \((W, \omega)\) is a symplectic manifold such that \(\omega|_\xi\) is nondegenerate (and orientations are compatible). \(M\) is stongly symplectically fillable if \(M = \partial W\), \((W, \omega)\) symplectic, and there is a Liouville vector field \(X\) (outward on \(\partial W\)) with \(\xi = \text{ker}(i_X\omega|_M)\). Work of Giroux and Eliashberg describes when tight contact structures on \(T^3\) are weakly or strongly symplectically fillable. In this paper, the same type of description is given for \(T^2\)-bundles over \(S^1\) constructed from elements of \(\text{SL}_2(\mathbb Z)\) with certain associated tight contact structures \(\xi_n\).

53D35 Global theory of symplectic and contact manifolds
57R17 Symplectic and contact topology in high or arbitrary dimension
57M50 General geometric structures on low-dimensional manifolds
57R65 Surgery and handlebodies
Full Text: DOI EMIS EuDML arXiv
[1] Y Eliashberg, Topological characterization of Stein manifolds of dimension \(> 2\), Internat. J. Math. 1 (1990) 29 · Zbl 0699.58002
[2] Y Eliashberg, Unique holomorphically fillable contact structure on the 3-torus, Internat. Math. Res. Notices (1996) 77 · Zbl 0852.58034
[3] J B Etnyre, Symplectic convexity in low-dimensional topology, Topology Appl. 88 (1998) 3 · Zbl 0930.53049
[4] J B Etnyre, K Honda, Tight contact structures with no symplectic fillings, Invent. Math. 148 (2002) 609 · Zbl 1037.57020
[5] R Friedman, J W Morgan, Smooth four-manifolds and complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 27, Springer (1994) · Zbl 0817.14017
[6] E Giroux, Convexité en topologie de contact, Comment. Math. Helv. 66 (1991) 637 · Zbl 0766.53028
[7] E Giroux, Une structure de contact, même tendue, est plus ou moins tordue, Ann. Sci. École Norm. Sup. \((4)\) 27 (1994) 697 · Zbl 0819.53018
[8] E Giroux, Une infinité de structures de contact tendues sur une infinité de variétés, Invent. Math. 135 (1999) 789 · Zbl 0969.53044
[9] E Giroux, Structures de contact en dimension trois et bifurcations des feuilletages de surfaces, Invent. Math. 141 (2000) 615 · Zbl 1186.53097
[10] R E Gompf, Handlebody construction of Stein surfaces, Ann. of Math. \((2)\) 148 (1998) 619 · Zbl 0919.57012
[11] R E Gompf, A I Stipsicz, 4-manifolds and Kirby calculus, Graduate Studies in Mathematics 20, American Mathematical Society (1999) · Zbl 0933.57020
[12] J W Gray, Some global properties of contact structures, Ann. of Math. \((2)\) 69 (1959) 421 · Zbl 0092.39301
[13] K Honda, On the classification of tight contact structures I, Geom. Topol. 4 (2000) 309 · Zbl 0980.57010
[14] K Honda, On the classification of tight contact structures II, J. Differential Geom. 55 (2000) 83 · Zbl 1038.57007
[15] Y Kanda, The classification of tight contact structures on the 3-torus, Comm. Anal. Geom. 5 (1997) 413 · Zbl 0899.53028
[16] P Libermann, C M Marle, Symplectic geometry and analytical mechanics, Mathematics and its Applications 35, D. Reidel Publishing Co. (1987) · Zbl 0643.53002
[17] D McDuff, Symplectic manifolds with contact type boundaries, Invent. Math. 103 (1991) 651 · Zbl 0719.53015
[18] A Weinstein, Contact surgery and symplectic handlebodies, Hokkaido Math. J. 20 (1991) 241 · Zbl 0737.57012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.