×

Nonlinear boundary integral equations for harmonic problems. (English) Zbl 0974.65112

Summary: Novel first kind Steklov-Poincaré and hypersingular operator boundary integral equations with nonlinear perturbations are proposed to solve harmonic problems in two- and three-dimensional Lipschitz domains with nonlinear boundary conditions. The equivalence and regularity of the solutions of the formulations are described. To initiate computational procedures for the solution of nonlinear boundary integral equations, a standard Newton scheme is analyzed and corresponding convergence results are given.

MSC:

65N38 Boundary element methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
31B20 Boundary value and inverse problems for harmonic functions in higher dimensions
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
35J65 Nonlinear boundary value problems for linear elliptic equations
31A25 Boundary value and inverse problems for harmonic functions in two dimensions

Software:

KELLEY
PDF BibTeX XML Cite
Full Text: DOI Link

References:

[1] K.E. Atkinson, The numerical solution of integral equations of the second kind , Cambridge University Press, Cambridge, 1997. · Zbl 0899.65077
[2] K.E. Atkinson and G.A. Chandler, BIE methods for solving Laplace’s equation with nonlinear boundary conditions : The smooth boundary case , Math. Comp. 55 (1991), 451-457. · Zbl 0709.65088
[3] R. Bialecki and A.J. Nowak, Boundary value problems in heat conduction with nonlinear material and nonlinear boundary conditions , Appl. Math. Modelling 5 (1981), 417-421. · Zbl 0475.65078
[4] M. Costabel, Boundary integral operators on Lipschitz domains : Elementary results , SIAM J. Math. Anal. 19 (1988), 613-626. · Zbl 0644.35037
[5] M. Costabel and E.P. Stephan, Boundary integral equations for mixed boundary value problems in polygonal domains and Galerkin approximation , in Mathematical models and methods in mechanics , Banach Centre Publ., Vol. 15, PWN, Warsaw, 1985. · Zbl 0655.65129
[6] ——–, On the convergence of collocation methods for boundary integral equations on polygons , Math. Comp. 49 (1987), 461-478. JSTOR: · Zbl 0636.65122
[7] R. Dautray and J.L. Lions, Mathematical analysis and numerical methods for science and technology , in Integral equations and numerical methods , Vol. 4 -1990. · Zbl 0664.47002
[8] R.L. Doucette, A collocation method for the numerical solution of Laplace’s equation with nonlinear boundary conditions on a polygon , SIAM J. Numer. Anal. 30 (1993), 717-732. JSTOR: · Zbl 0781.65087
[9] M.A. Efendiev, H. Schmitz and W.L. Wendland, On some nonlinear potential problems , Electron. J. Differential Equations 18 (1999), 17 pp. · Zbl 0923.35058
[10] P.P.B. Eggermont and J. Saranen, \(L^p\) estimates of boundary integral equations for some nonlinear boundary value problems , Numer. Math. 58 (1990), 465-478. · Zbl 0694.65056
[11] M. Ganesh, A BIE method for a nonlinear BVP , J. Comput. Appl. Math. 45 (1993), 299-308. · Zbl 0779.65074
[12] M. Ganesh, I.G. Graham and J. Sivaloganathan, A pseudospectral three-dimensional boundary integral method applied to a nonlinear model problems from finite elasticity , SIAM J. Numer. Anal. 31 (1994), 1378-1414. JSTOR: · Zbl 0815.41008
[13] M. Ganesh and O. Steinbach, Boundary element methods for potential problems with nonlinear boundary conditions , UNSW Appl. Math. preprint AMR98/17, 1998. (http://www.maths.unsw.edu.au/appweb/preprints/amr98.) JSTOR: · Zbl 0971.65107
[14] P. Grisvard, Elliptical problems in nonsmooth domains , Pitman, Boston, 1985. · Zbl 0695.35060
[15] M. Hahne and E.P. Stephan, Schwarz iterations for the efficient solution of screen problems with boundary elements , Computing 56 (1996), 61-85. · Zbl 0854.65110
[16] G.C. Hsiao, E.Schnack and W.L. Wendland, A hybrid coupled finite-boundary element method in elasticity , Comput. Methods Appl. Mech. Engrg. 173 (1999), 287-316. · Zbl 0957.74051
[17] G.C. Hsiao and W.L. Wendland, A finite element method for some integral equations of the first kind , J. Math. Appl. 58 (1977), 449-481. · Zbl 0352.45016
[18] D.B. Ingham, P.J. Higgs and M. Manzoor, Boundary integral equation solution of non-linear plane potential problem , IMA J. Numer. Anal. 1 (1981), 415-426. · Zbl 0485.65076
[19] C.T. Kelley, Iterative methods for linear and nonlinear equations , SIAM, Philadelphia, PA, 1995. · Zbl 0832.65046
[20] M.A. Kelmanson, Solution of nonlinear elliptic equations with boundary singularities by an integral equation method , J. Comp. Phys. 56 (1984), 244-258. · Zbl 0557.65078
[21] J.L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications , Springer, New York, 1972.
[22] K. Ruotsalainen and J. Saranen, On the collocation method for a nonlinear boundary integral equation , J. Comput. Appl. Math. 28 (1989), 339-348. · Zbl 0684.65098
[23] K. Ruotsalainen and W.L. Wendland, On the boundary element method for some nonlinear boundary value problems , Numer. Math. 53 (1988), 299-314. · Zbl 0651.65081
[24] O. Steinbach, Mixed approximations for boundary elements , submitted. · Zbl 0977.65107
[25] W.L. Wendland, Die Behandlung von Randwertaufgaben im \(R_3\) mit Hilfe von Einfach- und Doppelschichtpotentialen , Numer. Math. 11 (1968), 380-404. · Zbl 0165.18401
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.