zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Global dynamics of a SEIR model with varying total population size. (English) Zbl 0974.92029
Summary: A SEIR model for the transmission of an infectious disease that spreads in a population through direct contact of the hosts is studied. The force of infection is of proportionate mixing type. A threshold $\sigma$ is identified which determines the outcome of the disease; if $\sigma \le 1$, the infected fraction of the population disappears so the disease dies out, while if $\sigma>1$, the infected fraction persists and a unique endemic equilibrium state is shown, under a mild restriction on the parameters, to be globally asymptotically stable in the interior of the feasible region. Two other threshold parameters $\sigma'$ and $\overline\sigma$ are also identified; they determine the dynamics of the population sizes in the cases when the disease dies out and when it is endemic, respectively.

MSC:
92D30Epidemiology
34D23Global stability of ODE
37N25Dynamical systems in biology
WorldCat.org
Full Text: DOI
References:
[1] Anderson, R. M.; May, R. M.: Population biology of infectious diseases I. Nature 180, 361 (1979)
[2] May, R. M.; Anderson, R. M.: Population biology of infectious diseases II. Nature 280, 455 (1979)
[3] Busenberg, S. N.; Den Driessche, P. Van: Analysis of a disease transmission model in a population with varying size. J. math. Biol. 28, 257 (1990) · Zbl 0725.92021
[4] Nold, A.: Heterogeneity in disease-transmission modeling. Math. biosci. 52, 227 (1980) · Zbl 0454.92020
[5] Mena-Lorca, J.; Hethcote, H. W.: Dynamic models of infectious diseases as regulator of population sizes. J. math. Biol. 30, 693 (1992) · Zbl 0748.92012
[6] M.C.M. de Jong, O. Diekmann, H. Heesterbeek, How does transmission of infection depend on population size? in: Denis Mollison (Ed.), Epidemic Models: Their Structure and Relation to Data, Publications of the Newton Institute, vol. 5, Cambridge University, Cambridge, 1995, p. 84 · Zbl 0850.92042
[7] Liu, W. -M.; Hethcote, H. W.; Levin, S. A.: Dynamical behavior of epidemiological models with non-linear incidence rate. J. math. Biol. 25, 359 (1987) · Zbl 0621.92014
[8] Greenhalgh, D.: Hopf bifurcation in epidemic models with a latent period and non-permanent immunity. Math. comput. Modelling 25, 85 (1997) · Zbl 0877.92023
[9] Li, M. Y.; Muldowney, J. S.: Global stability for the SEIR model in epidemiology. Math. biosci. 125, 155 (1995) · Zbl 0821.92022
[10] Greenhalgh, D.; Das, R.: Modeling epidemics with variable contact rates. Theoret. popu. Biol. 47, 129 (1995) · Zbl 0833.92018
[11] Thieme, H.: Epidemic and demographic interaction in the spread of potentially fatal diseases in growing populations. Math. biosci. 111, 99 (1992) · Zbl 0782.92018
[12] Muldowney, J. S.: Compound matrices and ordinary differential equations. Rocky mount. J. math. 20, 857 (1990) · Zbl 0725.34049
[13] Cook, K. L.; Den Driessche, P. Van: Analysis of an SEIRS epidemic model with two delays. J. math. Biol. 35, 240 (1996) · Zbl 0865.92019
[14] H.L. Smith, Monotone dynamical systems, an introduction to the theory of competitive and cooperative systems, Am. Math. Soc., Providence (1995) · Zbl 0821.34003
[15] Hirsch, M. W.: Systems of differential equations which are competitive or cooperative IV: Structural stability in three dimensional systems SIAM. J. math. Anal. 21, 1225 (1990) · Zbl 0734.34042
[16] Smith, H. L.: Periodic orbits of competitive and cooperative systems. J. different. Eq. 65, 361 (1986) · Zbl 0615.34027
[17] J.P. LaSalle, The stability of dynamical systems, Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, 1976 · Zbl 0364.93002
[18] Butler, G. J.; Waltman, P.: Persistence in dynamical systems. Proc. am. Math. soc. 96, 425 (1986) · Zbl 0603.58033
[19] P. Waltman, A brief survey of persistence, in: S. Busenberg, M. Martelli (Eds.), Delay Differential Equations and Dynamical Systems, Springer, New York, 1991, p. 31 · Zbl 0756.34054
[20] Freedman, H. I.; Tang, M. X.; Ruan, S. G.: Uniform persistence and flows near a closed positively invariant set. J. dynam. Diff. equat. 6, 583 (1994) · Zbl 0811.34033
[21] R.A. Usmani, Applied Linear Algebra, Marcel Dekker, New York, 1987 · Zbl 0602.15001
[22] J.K. Hale, Ordinary Differential Equations, Wiley, New York, 1969 · Zbl 0186.40901
[23] Jr., R. H. Martin: Logarithmic norms and projections applied to linear differential systems. J. math. Anal. appl. 45, 432 (1974) · Zbl 0293.34018
[24] L. Markus, Asymptotically autonomous differential systems, Contributions to the Theory of Non-linear Oscillations, vol. 3, Princeton University, Princeton, NJ, 1956, p. 17 · Zbl 0075.27002
[25] Thieme, H.: Convergence results and a Poincaré--Bendixson trichotomy for asymptotically autonomous differential equations. J. math. Biol. 30, 755 (1992) · Zbl 0761.34039
[26] M.Y. Li, Geometrical studies on the global asymptotic behaviour of dissipative dynamical systems, PhD thesis, University of Alberta, 1993
[27] H.W. Hethcote, S.A. Levin, Periodicity in epidemiological models, in: L. Gross, S.A. Levin (Eds.), Applied Mathematical Ecology, Springer, New York, 1989, p. 193
[28] H.W. Hethcote, H.W. Stech, P. van den Driessche, Periodicity and stability in epidemic models: A survey, in: K.L. Cook (Ed.), Differential Equations and Applications in Ecology, Epidemics and Population Problems, Academic Press, New York, 1981, p. 65 · Zbl 0477.92014
[29] Hethcote, H. W.; Den Driessche, P. Van: Some epidemiological models with non-linear incidence. J. math. Biol. 29, 271 (1991) · Zbl 0722.92015
[30] Fiedler, M.: Additive compound matrices and inequality for eigenvalues of stochastic matrices. Czech math. J. 99, 392 (1974) · Zbl 0345.15013