zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Disturbance decoupling for a class of nonlinear MIMO systems by static measurement feedback. (English) Zbl 0974.93038
Summary: The disturbance decoupling problem for a square-invertible nonlinear system is stated and solved by static feedback of measured variables only, in contrast with standard solutions which assume that the full state is available for feedback. The results are valid for left-invertible systems as well.
93C73Perturbations in control systems
93B52Feedback control
93C10Nonlinear control systems
93C35Multivariable systems, multidimensional control systems
Full Text: DOI
[1] Andiarti, R.; Moog, C. H.: Output feedback disturbance decoupling in nonlinear systems. IEEE trans. Automat. control 41, 1683-1689 (1996) · Zbl 0863.93039
[2] S. Battilotti, Noninteracting Control with Stability for Nonlinear Systems, Lecture Notes in Control and Information Science, Vol. 196, Springer, Berlin, 1994. · Zbl 0799.93001
[3] S. Battilotti, A sufficient condition for nonlinear disturbance decoupling with stability via measurement feedback, Proceedings of CDC, San Diego, CA, 1997.
[4] Chen, B. M.: Solvability conditions for disturbance decoupling problems with static measurement feedback. Int. J. Control 68, 51-60 (1997) · Zbl 0888.93028
[5] G. Conte, C.H. Moog, A.M. Perdon, Nonlinear Control Systems -- An Algebraic Setting, Lecture Notes in Control and Information Science, Vol. 242, Springer, London, 1999. · Zbl 0920.93002
[6] Di Benedetto, M. D.; Grizzle, J. W.; Moog, C. H.: Rank invariants of nonlinear systems. SIAM J. Control optim. 27, 658-672 (1989) · Zbl 0696.93033
[7] H.J.C. Huijberts, Dynamic Feedback in Nonlinear Synthesis Problems, CWI Tract. Vol. 101, CWI, Amsterdam, 1994. · Zbl 0801.93022
[8] Huijberts, H. J. C.; Moog, C. H.; Andiarti, R.: Generalized controlled invariance for non-linear systems. SIAM J. Control optim. 3, 953-979 (1997) · Zbl 1047.93526
[9] Isidori, A.; Krener, A. J.; Giorgi, C. Gori; Monaco, S.: Nonlinear decoupling via feedback: a differential geometric approach. IEEE trans. Autom. contr. 26, 331-345 (1981) · Zbl 0481.93037
[10] Xia, X.; Moog, C. H.: Disturbance decoupling of nonlinear systems by measurement feedback. IEEE trans. Autom. contr. 44, 1425-1429 (1999) · Zbl 0954.93016