×

zbMATH — the first resource for mathematics

Biases in the Shanks-Rényi prime number race. (English) Zbl 0976.11041
The Shanks-Rényi prime number race concerns systems of inequalities of the form \[ \pi(x,q,a_1) >\pi(x,q,a_2) >\cdots> \pi(x,q,a_r),\tag{*} \] where, as usual, \(\pi(x,q,a)\) denotes the number of primes up to \(x\) that are congruent to \(a\pmod q\). Assuming the Riemann Hypothesis for Dirichlet \(L\)-functions \(\pmod q\) and the linear independence over \(\mathbb{Q}\) of their imaginary parts, M. Rubinstein and P. Sarnak [Exp. Math. 3, 173-197 (1994; Zbl 0823.11050)] proved that the set of \(x\) satisfying (*) has a positive logarithmic density \(\delta_{q;a_1,\dots,a_r}\). Using the same assumptions the present authors give a general formula for these densities and using it they study the behavior of \(\delta_{q;a_1,\dots,a_r}\) under permutations of the \(a_j\). In general it turns out that the densities in question are asymmetric under such permutations. There are however situations in which they remain unchanged.

MSC:
11N13 Primes in congruence classes
PDF BibTeX XML Cite
Full Text: DOI EuDML arXiv
References:
[1] Bays C., J. Reine Angew. Math. 339 pp 215– (1983)
[2] Davenport H., Multiplicative number theory,, 2. ed. (1980) · Zbl 0453.10002
[3] Deninger C., J. Reine Angew. Math. 351 pp 171– (1984)
[4] Kaczorowski J., Acta Arith. 74 (1) pp 31– (1996)
[5] DOI: 10.1007/BF02020796 · Zbl 0111.04506 · doi:10.1007/BF02020796
[6] Littlewood J. E., C. R. Acad. Sci. Paris 158 pp 1869– (1914)
[7] Montgomery, H. L. ”The zeta function and prime numbers”. Proceedings of the Queen’s Number Theory Conference. 1979, Kingston, ON. Edited by: Ribenboim, P. pp.1–31. Kingston, Ont.: Queen’s Univ. [Montgomery 1980], Queen’s Papers in Pure and Appl. Math. 54
[8] DOI: 10.1007/BF01458701 · JFM 48.0603.01 · doi:10.1007/BF01458701
[9] DOI: 10.1080/10586458.1994.10504289 · Zbl 0823.11050 · doi:10.1080/10586458.1994.10504289
[10] DOI: 10.1090/S0025-5718-1993-1195435-0 · doi:10.1090/S0025-5718-1993-1195435-0
[11] Selberg A., J. Reine Angew. Math. 227 pp 86– (1967)
[12] DOI: 10.2307/2002800 · Zbl 0097.03001 · doi:10.2307/2002800
[13] Stein E. M., Introduction to Fourier analysis on Euclidean spaces (1971)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.