El Bashir, R.; Hurt, J.; Jančařík, A.; Kepka, T. Simple commutative semirings. (English) Zbl 0976.16034 J. Algebra 236, No. 1, 277-306 (2001). A commutative semiring \(S\) is congruence-simple if and only if one of the following six cases holds: (1) the two-element semirings (which are not listed below), (2) the semiring \(V(G)\) where \(G\) is a multiplicative Abelian group, \(V(G)=G\cup\{0\}\), \(0x=0=x0\), \(x+x=x\), \(x+y=0\) for \(x\neq y\), (3) the semiring \(W(A)\) for any subsemigroup \(A\) of the additive group \(\mathbb{R}(+)\) of the reals \(\mathbb{R}\) with addition \(a+b=\min(a,b)\) and multiplication \(a*b=a+b\) such that \(A\cap\mathbb{R}^+\neq\emptyset\neq A\cap\mathbb{R}^-\), (4) fields, (5) zero-multiplication rings of finite prime order, (6) certain subsemirings of the positive real numbers \(\mathbb{R}^+\) subject to certain constraints. Also ideal-simple commutative semirings, semifields, parasemifields and finitely generated simple semirings are discussed. Reviewer: Richard Wiegandt (Budapest) Cited in 1 ReviewCited in 33 Documents MSC: 16Y60 Semirings 12K10 Semifields Keywords:congruence-simple commutative semirings; ideal-simple commutative semirings; semifields; parasemifields; finitely generated simple semirings × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Baer, B., Zur Topologie der Gruppen, J. Reine Angew. Math., 160, 208-226 (1929) · JFM 55.0676.03 [2] Becker, E., Partial orders on a field and valuation rings, Comm. Algebra, 7, 1933-1976 (1979) · Zbl 0432.12011 [3] Becker, E.; Schwartz, N., Zum Darstellungsatz von Kadison-Dubois, Arch. Math., 40, 421-428 (1983) · Zbl 0514.12023 [4] Cartan, H., Une théorème sur les groupes ordonnés, Bull. Sci. Math., 63, 201-205 (1939) · JFM 65.1124.02 [5] Chion, J. V., Arhimedovski uporjadočennye kol’ca, Uspekhi Mat. Nauk, 9, 237-242 (1954) · Zbl 0056.26302 [6] Dubois, D. W., On partly ordered fields, Proc. Amer. Math. Soc., 7, 918-930 (1956) · Zbl 0071.26304 [7] Dubois, D. W., A note on David Harrison’s theory of preprimes, Pacific J. Math., 21, 15-19 (1967) · Zbl 0147.29101 [8] Dubois, D. W., Second note on David Harrison’s theory of preprimes, Pacific J. Math., 24, 57-68 (1968) · Zbl 0155.36303 [9] Dubois, D. W., Infinite primes and ordered fields, Dissertationes Math. (Rozprawy Mat.), 69 (1970) · Zbl 0266.12103 [10] Eilhauer, R., Zur Theorie der Halbkörper, I, Acta Math. Acad. Sci. Hungar., 19, 23-45 (1968) · Zbl 0183.04202 [11] Głazek, K., A Short Guide through the Literature on Semirings (1985), University of WroclawMath. Institute: University of WroclawMath. Institute Poland [12] Golan, J., The Theory of Semirings with Applications in Math. and Theoretical Computer Science. The Theory of Semirings with Applications in Math. and Theoretical Computer Science, Pitman Monographs and Surveys in Pure and Applied Math., 54 (1992), Longman: Longman Harlow · Zbl 0780.16036 [13] Goodearl, K. R., Partially Ordered Abelian Groups with Interpolation. Partially Ordered Abelian Groups with Interpolation, Mathematical Surveys and Monographs, 20 (1986), American Mathematical Society · Zbl 0589.06008 [14] Handelman, D., Positive polynomials and product type actions of compact groups, Mem. Amer. Math. Soc., 320 (1985) · Zbl 0571.46045 [15] Harrison, D. K., Finite and infinite primes for rings and fields, Mem. Amer. Math. Soc., 68 (1968) · Zbl 0144.02802 [16] Hebisch, U.; Weinert, H. J., Halbringe-Algebraische Theorie und Anwendungen in der Informatik (1993), Teubner: Teubner Stuttgart · Zbl 0829.16035 [17] Hebisch, U.; Weinert, H. J., Semirings and semifields, Handbook of Algebra (1996), Elsevier: Elsevier New York, p. 425-462 · Zbl 0867.16026 [18] Hilbert, D., Grundlagen der Geometrie (1930), Teubner Verlag: Teubner Verlag Leipzig/Berlin · JFM 56.0481.01 [19] Hölder, O., Die Axiome der Quantität und die Lehre vom Mass, Ber. Verhandlungen König. Sächsischen Gesell. Wissen. Leipzig, 53, 1-64 (1901) · JFM 32.0079.01 [20] Hutchins, H. C., Division semirings with 1+1=1, Semigroup Forum, 22, 181-188 (1981) · Zbl 0467.16032 [21] Hutchins, H. C.; Weinert, H. J., Homomorphisms and kernels of semifields, Period. Math. Hungar., 21, 113-152 (1990) · Zbl 0718.16041 [22] Kadison, R. W., A representation theory for commutative topological algebra, Mem. Amer. Math. Soc., 7 (1951) · Zbl 0042.34801 [23] Koch, H., Über Halbkörper, die in algebraischen Zahlkörpern enhalten sind, Acta Math. Acad. Sci. Hungary., 15, 439-444 (1964) · Zbl 0131.28002 [24] Loonstra, F., Ordered groups, Proc. Nederl. Akad. Wetensch., 49, 41-66 (1945) · Zbl 0061.03407 [25] McKenzie, R.; Shelah, S., The cardinals of simple models for universal theories, Proc. Tarski Sympos., 25, 53-74 (1974) · Zbl 0316.02057 [26] Mitchell, S. S.; Fenoglio, P. B., Congruence-free commutative semirings, Semigroup Forum, 37, 79-91 (1988) · Zbl 0636.16020 [27] Reynolds, W. H., Embedding a partially ordered ring in a division algebra, Trans. Amer. Math. Soc., 158, 79-91 (1988) [28] Reynolds, W. H., A note on embedding a partial ordered ring in a division algebra, Proc. Amer. Math. Soc., 37, 37-41 (1973) · Zbl 0233.06005 [29] Stone, M. H., A general theory of spectra, I, Proc. Nat. Acad. Sci. USA, 26, 280-283 (1940) · Zbl 0063.07208 [30] Stone, M. H., A general theory of spectra, II, Proc. Nat. Acad. Sci. USA, 27, 83-87 (1941) · Zbl 0063.07209 [31] Tallini, G., Sui sistemi a doppia composizione ordinati archimedei, Atti Accad. Naz. Lincei Rend. Cl. Fis. Mat. Nat., 18, 367-373 (1955) · Zbl 0064.26401 [32] T. Tamura, Notes on semirings whose multiplicative semirings are groups, in; T. Tamura, Notes on semirings whose multiplicative semirings are groups, in [33] Vandiver, H. S., Note on a simple type of algebra in which the cancellation law of addition does not hold, Bull. Amer. Math. Soc., 40, 916-920 (1934) · Zbl 0010.38804 [34] Weinert, H. J., Über Halbringe und Halbkörper, I, Acta Math. Acad. Sci. Hungar., 13, 365-378 (1962) · Zbl 0125.01002 [35] Weinert, H. J., Über Halbringe und Halbkörper, II, Acta Math. Acad. Sci. Hungar., 14, 209-227 (1963) · Zbl 0125.01002 [36] Weinert, H. J., Über Halbringe und Halbkörper, III, Acta Math. Acad. Sci. Hungar., 15, 177-194 (1964) · Zbl 0138.01703 [37] Weinert, H. J., Ein Struktursatz für idempotente Halbkörper, Acta Math. Acad. Sci. Hungar., 15, 289-295 (1964) · Zbl 0142.00601 [38] Weinert, H. J., On 0-simple semirings, semigroup semirings, and two kinds of division semirings, Semigroup Forum, 28, 313-333 (1984) · Zbl 0526.16031 [39] Weinert, H. J.; Wiegandt, R., Complementary radical classes of proper semifields, Colloq. Math. Soc. János Bolyai, 61, 297-310 (1991) · Zbl 0805.16040 [40] Weinert, H. J.; Wiegandt, R., A. Kurosh-Amitsur radical theory for proper semifields, Comm. Algebra, 20, 2419-2458 (1992) · Zbl 0771.16016 [41] Weinert, H. J.; Wiegandt, R., On the structure of semifields and lattice-ordered groups, Period. Math. Hungar., 32, 147-162 (1996) · Zbl 0896.12001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.