zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Variationally stable difference systems. (English) Zbl 0976.39002
The authors derive $h$-stability conditions (defined in the paper) for nonlinear difference systems $$x(n+1)=f(n,x(n))$$ and their perturbed difference systems $$y(n+1)=f(n,y(n))+g(n,y(n)),$$ where $x(n)$ and $y(n)$ are appropriately defined in the paper.

39A11Stability of difference equations (MSC2000)
Full Text: DOI
[1] Agarwal, R. P.: Difference equations and inequalities--theory, methods, and applications. (2000) · Zbl 0952.39001
[2] Athanassov, Z. S.: Perturbation theorems for nonlinear systems of ordinary differential equations. J. math. Anal. appl. 86, 194-207 (1982) · Zbl 0508.34036
[3] Choi, S. K.; Goo, Y. H.; Koo, N. J.: Lipschitz stability and exponential asymptotic stability for the nonlinear functional differential systems. Dynam. systems appl. 6, 397-410 (1997) · Zbl 0890.34061
[4] Choi, S. K.; Koo, N. J.: Variationally stable difference systems by n\infty-similarity. J. math. Anal. appl. 249, 553-568 (2000) · Zbl 0965.39001
[5] Choi, S. K.; Koo, N. J.; Ryu, H. S.: H-stability of differential systems via t\infty-similarity. Bull. korean math. Soc. 34, 371-383 (1997) · Zbl 0891.34059
[6] Hewer, G. A.: Stability properties of the equations of first variation by t\infty-similarity. J. math. Anal. appl. 41, 336-344 (1973) · Zbl 0256.34063
[7] Lakshmikantham, V.; Trigiante, D.: Theory of difference equations with applications to numerical analysis. (1988) · Zbl 0683.39001
[8] Medina, R.: Stability for nonlinear difference systems. Dynam. systems appl. 9, 1-14 (2000)
[9] Medina, R.: Perturbations of nonlinear systems of difference equations. J. math. Anal. appl. 204, 545-553 (1996) · Zbl 0873.39005
[10] Medina, R.: Stability and asymptotic behavior of difference equations. J. comput. Appl. math. 80, 17-30 (1997) · Zbl 0877.39006
[11] Medina, R.: Asymptotic behavior of nonlinear difference systems. J. math. Anal. appl. 219, 294-311 (1998) · Zbl 0908.39002
[12] Medina, R.: Stability results for nonlinear difference equations. Nonlinear stud. 6, 73-83 (1999) · Zbl 0960.39007
[13] Medina, R.; Pinto, M.: Stability of nonlinear difference equations. Proc. dynam. Systems appl. 2, 397-404 (1996) · Zbl 0861.39004
[14] Medina, R.; Pinto, M.: Variationally stable difference equations. Nonlinear anal. 30, 1141-1152 (1997) · Zbl 0889.39004
[15] Sheng, Q.; Agarwal, P.: On nonlinear variation of parameter methods for summary difference equations. Dynam. systems appl. 2, 227-242 (1993) · Zbl 0794.39004