×

Two weight extrapolation via the maximal operator. (English) Zbl 0976.46018

There are obtained extrapolation theorems for weighted \(L^p\)-spaces with pairs of weights \((w,M^kw)\) and \((w,(Mw/w)^rw)\), where \(M^k\) is the \(k\)th iterate of the Hardy-Littlewood maximal operator. As an example, I shall quote Theorem 1.1.1:
Let \(\|\cdot,L^p_w\|\) denote the norm in the weighted space \(L^p_w(\mathbb{R}^n)\). Let \(S\) and \(T\) be operators (not necessarily linear) and let \(f\) be a function in a suitable test class for both \(S\) and \(T\). Let us suppose, there are constants \(p_0\) and \(C_0\) and a positive integer \(k\) such that for all weights \(w\) there holds \(\|Tf,L^{p_0}_w\|\leq C_0\|Sf, L^{p_0}_{M^kw}\|\). Then for every \(p\in (p_0,\infty)\) there exists a constant \(C_p\) (dependent on \(p_0\), \(p\), \(k\), \(n\)) such that the inequality \(\|Tf, L^p_w\|\leq C_p\|Sf, L^p_{M^{[kp/p_0]+ 1_w}}\|\) holds for all weights \(w\).
There are given applications to square functions and to Calderón-Zygmund singular integral operator.

MSC:

46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
42B25 Maximal functions, Littlewood-Paley theory
42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
46M35 Abstract interpolation of topological vector spaces
47B38 Linear operators on function spaces (general)
46B70 Interpolation between normed linear spaces
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Bennett, C.; Sharpley, R., Interpolation of Operators (1988), Academic Press: Academic Press New York · Zbl 0647.46057
[2] Bergh, J.; Löfström, J., Interpolation Spaces: An Introduction. Interpolation Spaces: An Introduction, Grund. der math. Wissenschaften, 223 (1976), Springer-Verlag: Springer-Verlag New York · Zbl 0344.46071
[3] Carozza, M.; Passarelli di Napoli, A., Composition of maximal operators, Publ. Mat., 40, 397-409 (1996) · Zbl 0865.42016
[4] Chang, S.-Y. A.; Wilson, J. M.; Wolff, T. H., Some weighted norm inequalities concerning the Schrödinger operators, Comment. Math. Helv., 60, 217-246 (1985) · Zbl 0575.42025
[5] Chanillo, S.; Wheeden, R., Some weighted norm inequalities for the area integral, Indiana Univ. Math. J., 36, 277-294 (1987) · Zbl 0598.34019
[6] Cruz-Uribe, D., Piecewise monotonic doubling measures, Rocky Mountain J. Math., 26, 1-39 (1996) · Zbl 0861.42007
[7] Cruz-Uribe, D.; Pérez, C., Sharp two-weight, weak-type norm inequalities for singular integral operators, Math. Res. Lett., 6, 417-428 (1999) · Zbl 0961.42013
[8] Derrick, W. R., Open problems in singular integral theory, J. Integral Equations Appl., 5, 23-28 (1993) · Zbl 0773.42011
[9] Fefferman, C., The uncertainty principle, Bull. Amer. Math. Soc., 9, 129-206 (1983) · Zbl 0526.35080
[10] Fefferman, C.; Stein, E. M., Some maximal inequalities, Amer. J. Math., 93, 107-115 (1971) · Zbl 0222.26019
[11] Garcı́a-Cuerva, J.; Rubio de Francia, J. L., Weighted Norm Inequalities and Related Topics. Weighted Norm Inequalities and Related Topics, North-Holland Math. Studies, 116 (1985), North-Holland: North-Holland Amsterdam · Zbl 0578.46046
[12] Neugebauer, C. J., A double weight extrapolation theorem, Proc. Amer. Math. Soc., 93, 451-455 (1985) · Zbl 0574.42015
[13] O’Neil, R., Fractional integration in Orlicz spaces, Trans. Amer. Math. Soc., 115, 300-328 (1963) · Zbl 0132.09201
[14] O’Neil, R., Integral transforms and tensor products on Orlicz spaces and \(L_{p, q}\) spaces, J. Anal. Math., 21, 1-276 (1968) · Zbl 0182.16703
[15] Pérez, C., Weighted norm inequalities for singular integral operators, J. London Math. Soc., 49, 296-308 (1994) · Zbl 0797.42010
[16] Pérez, C., On sufficient conditions for the boundedness of the Hardy-Littlewood maximal operator between weighted \(L^p\)-spaces with different weights, Proc. London Math. Soc., 71, 135-157 (1995) · Zbl 0829.42019
[17] Pérez, C., Sharp estimates for commutators of singular integrals via iterations of the Hardy-Littlewood maximal function, J. Fourier Anal. Appl., 3, 743-756 (1997) · Zbl 0894.42006
[18] C. Pérez, Sharp weighted inequalities for the vector-valued maximal function, Trans. Amer. Math. Soc, to appear.; C. Pérez, Sharp weighted inequalities for the vector-valued maximal function, Trans. Amer. Math. Soc, to appear. · Zbl 0944.42012
[19] Rubio de Francia, J. L., Factorization theory and \(A_p\) weights, Amer. J. Math., 106, 533-547 (1984) · Zbl 0558.42012
[20] Stein, E. M., Note on the class \(L\) log \(L\), Studia Math., 32, 305-310 (1969) · Zbl 0182.47803
[21] Stein, E. M.; Weiss, G., Interpolation of operators with change of measures, Trans. Amer. Math. Soc., 87, 159-172 (1958) · Zbl 0083.34301
[22] Uchiyama, A., \(L^p\) weighted inequalities for the dyadic square function, Studia Math., 115, 135-149 (1995) · Zbl 0842.42010
[23] Weiss, G., A note on Orlicz spaces, Portugal. Math., 15, 35-47 (1950) · Zbl 0071.33001
[24] Wilson, J. M., A sharp inequality for the square function, Duke Math. J., 55, 879-887 (1987) · Zbl 0639.42017
[25] Wilson, J. M., Weighted norm inequalities for the continuous square functions, Trans. Amer. Math. Soc., 314, 661-692 (1989) · Zbl 0689.42016
[26] Wilson, J. M., \(L^p\) weighted norm inequalities for the square function, \(0<p<2\), Illinois J. Math., 33, 361-366 (1989) · Zbl 0684.42010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.