zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A perspective on the numerical treatment of Volterra equations. (English) Zbl 0976.65121
Following a short introduction to the basic theory of Volterra integral and integro-differential equations, the author surveys the principle classes of of numerial methods for such functional equations: these include methods based on elementary quadrature formulas; Runge-Kutta type methods; and (exact and discretized) collocation methods. The subsequent discussion of the analysis of these numerical methods focuses on their stability properties. An extensive list of references complements this survey.

MSC:
65R20Integral equations (numerical methods)
45G10Nonsingular nonlinear integral equations
45J05Integro-ordinary differential equations
45E10Integral equations of the convolution type
45D05Volterra integral equations
Software:
Algorithm 689
WorldCat.org
Full Text: DOI
References:
[1] Baker, C. T. H.: Numerical analysis of Volterra functional and integral equations. The state of the art in numerical analysis, 193-222 (1997) · Zbl 0881.65140
[2] Baker, C. T. H.; Derakhshan, M. S.: FFT techniques in the numerical solution of convolution equations. J. comput. Appl. math. 20, 5-24 (1987) · Zbl 0629.65143
[3] Baker, C. T. H.; Derakhshan, M. S.: Computed approximations to some power series. Internat. schriftenreihe numer. Math. 81, 11-20 (1986)
[4] Baker, C. T. H.; Derakhshan, M. S.: Stability barriers to the construction of ${{\rho},{\sigma}}$-reducible and fractional quadrature rules. Internat. schriftenreihe numer. Math. 85, 1-15 (1988) · Zbl 0652.65014
[5] Baker, C. T. H.; Tang, A.: Stability analysis of continuous implicit Runge--Kutta methods for Volterra integro-differential systems with unbounded delay. Appl. numer. Math. 24, 153-173 (1997) · Zbl 0878.65122
[6] Baker, C. T. H.; Miller (Eds.), G. F.: Treatment of integral equations by numerical methods. (1982)
[7] Baker, C. T. H.; Keech, M. S.: Stability regions in the numerical treatment of Volterra integral equations. SIAM J. Numer. anal. 15, 394-417 (1978) · Zbl 0409.65056
[8] Baker, C. T. H.; Makroglou, A.; Short, E.: Regions of stability in the numerical treatment of Volterra integro-differential equations. SIAM J. Numer. anal. 16, 890-910 (1979) · Zbl 0428.65066
[9] C.T.H. Baker, A. Tang, Numerical solution of Volterra integro-differential equations with an unbounded delay, Hellenic European Research on Mathematics and Informatics ’94, Vols. 1, 2, Hellenic Mathematical Society, Athens, 1994, pp. 129--136.
[10] Baker, C. T. H.; Wilkinson, J. C.: Stability analysis of Runge--Kutta methods applied to a basic Volterra integral equation. J. austral. Math. soc. Ser. B 22, 515-538 (1980/81)
[11] Beesack, P. R.: On some variation of parameter methods for integro-differential, integral, and quasilinear partial integro-differential equations. Appl. math. Comput. 22, 189-215 (1987) · Zbl 0621.45006
[12] Bellen, A.; Jackiewicz, Z.; Vermiglio, R.; Zennaro, M.: Natural continuous extensions of Runge--Kutta methods for Volterra integral equations of the second kind and their applications. Math. comp. 52, 49-63 (1989) · Zbl 0658.65137
[13] Bellen, A.; Jackiewicz, Z.; Vermiglio, R.; Zennaro, M.: A stability analysis of the trapezoidal method for Volterra integral-equations with completely positive kernels. J. math. Anal. appl. 152, 324-342 (1990) · Zbl 0715.65107
[14] Bel’tyukov, B. A.: Analogue of the Runge--Kutta method for the solution of nonlinear integral equations of Volterra type. Differential equations 1, 417-433 (1965)
[15] Bernfeld, S. H.; Lord, M. E.: A nonlinear variation of constants method for integro differential and integral equations. Appl. math. Comput. 4, 1-14 (1978) · Zbl 0374.45008
[16] Blom, J. G.; Brunner, H.: The numerical solution of nonlinear Volterra integral equations of the second kind by collocation and iterated collocation methods. SIAM J. Sci. statist. Comput. 8, 806-830 (1987) · Zbl 0629.65144
[17] Blank, L.: Stability of collocation for weakly singular Volterra equations. IMA J. Numer. anal. 15, 357-375 (1995) · Zbl 0830.65135
[18] Blank, L.: Stability results for collocation methods for Volterra integral equations. Appl. math. Comput. 79, 267-288 (1996) · Zbl 0870.65137
[19] Blom, J. G.; Brunner, H.: Algorithm 689: collocation for nonlinear Volterra integral equations of the second kind. ACM trans. Math. software 17, 167-177 (1991) · Zbl 0900.65382
[20] Bownds, J. M.: Theory and performance of a subroutine for solving Volterra integral equations. Computing 28, 317-332 (1982) · Zbl 0473.65096
[21] Bownds, J. M.; Applebaum, L.: Algorithm 627: A Fortran subroutine for solving Volterra integral equations. ACM trans. Math. software 11, 58-65 (1985) · Zbl 0562.65093
[22] Brauer, F.: A nonlinear variation of constants formula for Volterra equations. Math. systems theory 6, 226-234 (1972) · Zbl 0241.45006
[23] Brunner, H.: Superconvergence in collocation and implicit Runge--Kutta methods for Volterra-type integral equations of the second kind. Internat. schriftenreihe numer. Math. 53, 54-72 (1980) · Zbl 0438.65109
[24] Brunner, H.: The variation of constants formulas in the numerical analysis of integral and integro-differential equations. Utilitas math. 19, 255-290 (1980) · Zbl 0483.65034
[25] Brunner, H.: A survey of recent advances in the numerical treatment of Volterra integral and integro-differential equations. J. comput. Appl. math. 8, 213-229 (1982) · Zbl 0485.65087
[26] Brunner, H.: Nonpolynomial spline collocation for Volterra equations with weakly singular kernels. SIAM J. Numer. anal. 20, 1106-1119 (1983) · Zbl 0533.65087
[27] Brunner, H.: The numerical solution of weakly singular Volterra integral equations by collocation on graded meshes. Math. comp. 45, 417-437 (1985) · Zbl 0584.65093
[28] Brunner, H.: The approximate solution of Volterra equations with nonsmooth solutions. Utilitas math. 27, 57-95 (1985) · Zbl 0563.65077
[29] Brunner, H.: On the numerical solution by collocation of Volterra integro-differential equations with nonsmooth solutions. Internat. schriftenreihe numer. Math. 73, 74-92 (1985)
[30] Brunner, H.: On the history of numerical methods for Volterra integral equations. CWI newslett. 11, 3-20 (1986)
[31] Brunner, H.: High-order methods for the numerical solution of Volterra integro-differential equations. J. comput. Appl. math. 15, 301-309 (1986) · Zbl 0634.65143
[32] Brunner, H.: Polynomial spline collocation methods for Volterra integro-differential equations with weakly singular kernels. IMA J. Numer. anal. 6, 221-239 (1986) · Zbl 0634.65142
[33] Brunner, H.: Implicit Runge--Kutta--Nyström methods for general second-order Volterra integro-differential equations. Comput. math. Appl. 14, 549-559 (1987) · Zbl 0632.65137
[34] Brunner, H.: The approximate solution of initial-value problems for general Volterra integro-differential equations. Computing 40, 125-137 (1988) · Zbl 0631.65141
[35] Brunner, H.: The numerical treatment of Volterra integro-differential equations with unbounded delay. J. comput. Appl. math. 28, 5-23 (1989) · Zbl 0687.65131
[36] Brunner, H.: Collocation methods for nonlinear Volterra integro-differential equations with infinite delay. Math. comp. 53, 571-587 (1989) · Zbl 0681.65105
[37] Brunner, H.: Direct quadrature methods for nonlinear Volterra integro-differential equations with infinite delay. Utilitas math. 40, 237-250 (1991) · Zbl 0757.65138
[38] Brunner, H.: Implicitly linear collocation methods for nonlinear Volterra equations. Appl. numer. Math. 9, 235-247 (1992) · Zbl 0761.65103
[39] Brunner, H.: On discrete superconvergence properties of spline collocation methods for nonlinear Volterra integral equations. J. comput. Math. 10, 348-357 (1992) · Zbl 0758.65083
[40] Brunner, H.: Open problems in the discretization of Volterra integral equations. Numer. funct. Anal. optim. 17, 717-736 (1996) · Zbl 0882.65140
[41] Brunner, H.: 1896--1996: one hundred years of Volterra integral equations of the first kind. Appl. numer. Math. 24, 83-93 (1997) · Zbl 0879.45001
[42] Brunner, H.; Hairer, E.; Nørsett, S. P.: Runge--Kutta theory for Volterra integral equations of the second kind. Math. comp. 39, 147-163 (1982) · Zbl 0496.65066
[43] H. Brunner, Q. Hu, Q. Lin, Geometric meshes in collocation methods for Volterra integral equations with proportional time delays, Report 99-25 Seminar für Angewandte Mathematik, ETH, Zurich, 1999. · Zbl 1014.65143
[44] Brunner, H.; Lin, Y.; Zhang, S.: Higher accuracy methods for second-kind Volterra integral equations based on asymptotic expansions of iterated Galerkin methods. J. integral equations appl. 10, 375-396 (1998) · Zbl 0944.65140
[45] Brunner, H.; Makroglou, A.; Miller, R. K.: On mixed collocation methods for Volterra integral equations with periodic solution. Appl. numer. Math. 24, 115-130 (1997) · Zbl 0878.65117
[46] Brunner, H.; Pedas, A.; Vainikko, G.: The piecewise polynomial collocation method for nonlinear weakly singular Volterra equations. Math. comp. 68, 1079-1095 (1999) · Zbl 0941.65136
[47] Brunner, H.; Qun, L.; Ningning, Y.: The iterative correction method for Volterra integral equations. Bit 36, 221-228 (1996) · Zbl 0854.65121
[48] Brunner, H.; Ningning, Y.: On global superconvergence of iterated collocation solutions to linear second-kind Volterra integral equations. J. comput. Appl. math. 67, 185-189 (1996) · Zbl 0857.65145
[49] Brunner, H.; Van Der Houwen, P. J.: The numerical solution of Volterra equations. (1986) · Zbl 0611.65092
[50] Brunner, H.; Lambert, J. D.: Stability of numerical methods for Volterra integro-differential equations. Computing 12, 75-89 (1974) · Zbl 0282.65088
[51] Brunner, H.; Nørsett, S. P.: Superconvergence of collocation methods for Volterra and Abel integral equations of the second kind. Numer. math. 36, 347-358 (1980/81)
[52] Burton, T. A.: Volterra integral and differential equations. (1983) · Zbl 0515.45001
[53] Cahlon, B.: Numerical solution of nonlinear Volterra integral equations. J. comput. Appl. math. 7, 121-128 (1981) · Zbl 0469.65100
[54] Cahlon, B.: On the stability of Volterra integral-equations with a lagging argument. Bit 35, 19-29 (1995) · Zbl 0827.65142
[55] Corduneanu, C.: Principles of differential and integral operators. (1988) · Zbl 0714.15006
[56] Corduneanu, C.: Integral equations and stability of feedback systems. (1973) · Zbl 0273.45001
[57] C. Corduneanu, Functional Equations with Causal Operators, Gordon and Breach, in preparation.
[58] Corduneanu, C.; Lakshmikantham, V.: Equations with unbounded delay: a survey. Nonlinear anal. 4, 831-877 (1980) · Zbl 0449.34048
[59] Corduneanu, C.; Sandberg (Eds.), I. W.: Volterra equations and applications. (2000)
[60] Crisci, M. R.; Kolmanovskii, V. B.; Russo, E.; Vecchio, A.: Stability of difference Volterra equations: direct Liapunov method and numerical procedure. Comput. math. Appl. 36, 77-97 (1998) · Zbl 0933.39007
[61] Crisci, M. R.; Kolmanovskii, V. B.; Russo, E.; Vecchio, A.: Boundedness of discrete Volterra equations. J. math. Anal. appl. 211, 106-130 (1997) · Zbl 0882.65134
[62] Crisci, M. R.; Kolmanovskii, V. B.; Russo, E.; Vecchio, A.: Stability of continuous and discrete Volterra integro-differential equations by Liapunov approach. J. integral equations appl. 7, 393-411 (1995) · Zbl 0858.45008
[63] Crisci, M. R.; Russo, E.; Vecchio, A.: Stability of collocation methods for Volterra integro-differential equations. J. integral equations appl. 4, 491-507 (1992) · Zbl 0768.65089
[64] Crisci, M. R.; Russo, E.; Jackiewicz, Z.; Vecchio, A.: Global stability of exact collocation methods for Volterra integro-differential equations. Atti sem. Mat. fis. Univ. modena 39, 527-536 (1991) · Zbl 0758.65084
[65] Crisci, M. R.; Russo, E.; Vecchio, A.: Stability results for one-step discretized collocation methods in the numerical treatment of Volterra integral equations. Math. comp. 58, 119-134 (1992) · Zbl 0744.65101
[66] Dixon, J.; Mckee, S.; Jeltsch, R.: Convergence analysis of discretization methods for nonlinear first kind Volterra integral equations. Numer. math. 49, 67-80 (1986) · Zbl 0563.65082
[67] Dixon, J.; Mckee, S.: A unified approach to convergence analysis of discretization methods for Volterra-type equations. IMA J. Numer. anal. 5, 41-57 (1985) · Zbl 0563.65083
[68] Duff, I. S.; Watson (Eds.), G. A.: The state of the art in numerical analysis. (1997)
[69] Eggermont, P. P. B.: Improving the accuracy of collocation solutions of Volterra integral equations of the first kind by local interpolation. Numer. math. 48, 263-279 (1986) · Zbl 0561.65092
[70] Eggermont, P. P. B.: On monotone Abel--Volterra integral equations on the half line. Numer. math. 52, 65-79 (1988) · Zbl 0634.65138
[71] Eggermont, P. P. B.: Uniform error estimates of Galerkin methods for monotone Abel--Volterra integral equations on the half-line. Math. comp. 53, 157-189 (1989) · Zbl 0674.65104
[72] Ford, N. J.; Baker, C. T. H.: Qualitative behaviour and stability of solutions of discretised nonlinear Volterra integral equations of convolution type. J. comput. Appl. math. 66, 213-225 (1996) · Zbl 0858.65137
[73] Ford, N. J.; Baker, C. T. H.: Preserving transient behaviour in numerical solutions of Volterra integral equations of convolution type. Integral and integro-differential equations, 77-89 (1999) · Zbl 0965.65146
[74] Ford, N. J.; Baker, C. T. H.; Roberts, J. A.: A. nonlinear Volterra integro-differential equations -- stability and numerical stability of ${\theta}$-methods. J. integral equations appl. 10, 397-416 (1998) · Zbl 0944.65150
[75] Gorenflo, R.; Mainardi, F.: Fractional calculus: integral and differential equations of fractional order. CISM courses and lectures 378, 223-276 (1997)
[76] Gorenflo, R.; Vessela, S.: Abel integral equations. (1991)
[77] Gripenberg, G.; Londen, S. -O.; Staffans, O.: Volterra integral and functional equations. (1990) · Zbl 0695.45002
[78] Hairer, E.; Lubich, C.: On the stability of Volterra--Runge--Kutta methods. SIAM J. Numer. anal. 21, 123-135 (1984) · Zbl 0532.65086
[79] Hairer, E.; Lubich, C.: An extension of ODE-methods to Volterra integral equations. Teubner-texte math. 82, 55-63 (1986)
[80] Hairer, E.; Lubich, C.; Nørsett, S. P.: Order of convergence of one-step methods for Volterra integral equations of the second kind. SIAM J. Numer. anal. 20, 569-579 (1983) · Zbl 0519.65088
[81] Hairer, E.; Lubich, C.; Schlichte, M.: Fast numerical solution of weakly singular Volterra integral equations. J. comput. Appl. math. 23, 87-98 (1988) · Zbl 0654.65091
[82] Hairer, E.; Lubich, C.; Schlichte, M.: Fast numerical solution of nonlinear Volterra convolution equations. SIAM J. Sci. statist. Comput. 6, 532-541 (1985) · Zbl 0581.65095
[83] Van Der Houwen, P. J.: Convergence and stability results in Runge--Kutta type methods for Volterra integral equations of the second kind. Bit 20, 375-377 (1980) · Zbl 0472.65095
[84] Van Der Houwen, P. J.; Te Riele, H. J. J.: Backward differentiation type formulas for Volterra integral equations of the second kind. Numer. math. 37, 205-217 (1981) · Zbl 0442.65124
[85] Van Der Houwen, P. J.; Wolkenfelt, P. H. M.: On the stability of multistep formulas for Volterra integral equations of the second kind. Computing 24, 341-347 (1980) · Zbl 0413.65085
[86] Van Der Houwen, P. J.; Wolkenfelt, P. H. M.; Baker, C. T. H.: Convergence and stability analysis for modified Runge--Kutta methods in the numerical treatment of second-kind Volterra integral equations. IMA J. Numer. anal. 1, 303-328 (1981) · Zbl 0465.65071
[87] Hu, Q.: Superconvergence of numerical solutions to Volterra integral equations with singularities. SIAM J. Numer. anal. 34, 1698-1707 (1997) · Zbl 0892.65083
[88] Jones, H. M.; Mckee, S.: Variable step size predictor--corrector schemes for second kind Volterra integral equations. Math. comp. 44, 391-404 (1985) · Zbl 0588.65091
[89] Kauthen, J. -P.: Implicit Runge--Kutta methods for some integrodifferential-algebraic equations. Appl. numer. Math. 13, 125-134 (1993) · Zbl 0787.65106
[90] Kauthen, J. -P.: Implicit Runge--Kutta methods for singularly perturbed integro-differential systems. Appl. numer. Math. 18, 201-210 (1995) · Zbl 0840.65140
[91] Kauthen, J. -P.: A survey of singularly perturbed Volterra equations. Appl. numer. Math. 24, 95-114 (1997) · Zbl 0883.45003
[92] Kauthen, J. -P.; Brunner, H.: Continuous collocation approximations to solutions of first kind Volterra equations. Math. comp. 66, 1441-1459 (1997) · Zbl 0890.65138
[93] Kershaw, D.: Some results for Abel--Volterra integral equations of the second kind. Treatment of integral equations by numerical methods, 273-282 (1982) · Zbl 0532.65090
[94] Lakshmikantham, V.; Deo, S. G.: Method of variation of parameters for dynamic systems. (1998) · Zbl 0920.34001
[95] Lakshmikantham, V.; Rao, M. Rama Mohana: Theory of integro-differential equations. (1995)
[96] Linz, P.: Analytical and numerical methods for Volterra equations. (1985) · Zbl 0566.65094
[97] Lubich, C.: Fractional linear multistep methods for Abel--Volterra integral equations of the first kind. IMA J. Numer. anal. 7, 97-106 (1987) · Zbl 0624.65137
[98] Lubich, C.: A stability analysis of convolution quadratures for Abel--Volterra integral equations. IMA J. Numer. anal. 6, 87-101 (1986) · Zbl 0587.65090
[99] Lubich, C.: Runge--Kutta theory for Volterra integro-differential equations. Numer. math. 40, 119-135 (1982) · Zbl 0491.65064
[100] Lubich, C.: Runge--Kutta theory for Volterra and Abel integral equations of the second kind. Math. comp. 41, 87-102 (1983) · Zbl 0538.65091
[101] Lubich, C.: Fractional linear multistep methods for Abel--Volterra integral equations of the second kind. Math. comp. 45, 463-469 (1985) · Zbl 0584.65090
[102] Lubich, C.: On the stability of linear multistep methods for Volterra convolution equations. IMA J. Numer. anal. 3, 439-465 (1983) · Zbl 0543.65095
[103] Lubich, C.: Runge--Kutta theory for Volterra and Abel integral equations of the second kind. Math. comp. 41, 87-102 (1983) · Zbl 0538.65091
[104] Lubich, C.: Runge--Kutta theory for Volterra integro-differential equations. Numer. math. 40, 119-135 (1982) · Zbl 0491.65064
[105] Lubich, C.: On the stability of linear multistep methods for Volterra integral equations of the second kind. Treatment of integral equations by numerical methods, 233-238 (1982) · Zbl 0502.65080
[106] Lubich, C.; Sloan, I. H.; Thomée, V.: Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term. Math. comp. 65, 1-17 (1996) · Zbl 0852.65138
[107] Mckee, S.: Generalized discrete Gronwall lemmas. Z. angew. Math. mech. 62, 429-434 (1982) · Zbl 0524.26013
[108] Mckee, S.: Volterra integral and integro-differential equations arising from problems in engineering and science. Bull. inst. Math. appl. 24, 135-138 (1988) · Zbl 0661.65138
[109] Mckee, S.: A review of linear multistep methods and product integration methods and their convergence analysis for first kind Volterra integral equations. Treatment of integral equations by numerical methods, 153-161 (1982) · Zbl 0525.65088
[110] Mckee, S.; Brunner, H.: The repetition factor and numerical stability of Volterra integral equations. Comput. math. Appl. 6, 339-347 (1980) · Zbl 0458.65109
[111] Miller, R. K.: Nonlinear Volterra integral equations. (1972)
[112] Nevanlinna, O.: On the numerical solutions of some Volterra equations on infinite intervals. Rev. anal. Numér. theéorie approx. 5, 31-57 (1976) · Zbl 0356.65116
[113] Nevanlinna, O.: On the stability of discrete Volterra equations. Treatment of integral equations by numerical methods, 139-147 (1982)
[114] P. Pouzet, Etude, en vue de leur approximation numérique, des solutions d’équations intégrales et intégrodifférentielles de type Volterra pour des problèmes de conditions initiales, Thése, Université de Strasbourg, 1962.
[115] Roberts, A. A.: Analysis of explosion for nonlinear Volterra equations. J. comput. Appl. math. 97, 153-166 (1998) · Zbl 0932.45007
[116] Shampine, L. F.: Solving Volterra integral equations with ODE codes. IMA J. Numer. anal. 8, 37-41 (1988) · Zbl 0636.65140
[117] Shaw, S.; Whiteman, J. R.: Applications and numerical analysis of partial differential Volterra equations: a brief survey. Comput. methods appl. Mech. eng. 150, 397-409 (1997) · Zbl 0907.65146
[118] Tsalyuk, Z. B.: Volterra integral equations. J. soviet math. 12, 715-758 (1979) · Zbl 0439.45001
[119] Vecchio, A.: Stability results on some direct quadrature methods for Volterra integro-differential equations. Dynamics systems appl. 7, 501-518 (1998) · Zbl 0924.65139
[120] Volterra, V.: Leçons sur LES équations intégrales et intégro-différentielles. (1913)
[121] Wolkenfelt, P. H. M.: The numerical analysis of reducible quadrature methods for Volterra integral and integro-differential equations -- academisch proefschrift. (1981) · Zbl 0466.65073
[122] Wolkenfelt, P. H. M.: The construction of reducible quadrature-rules for Volterra integral and integro-differential equations. IMA J. Numer. anal. 2, 131-152 (1982) · Zbl 0481.65084
[123] Wolkenfelt, P. H. M.; Van Der Houwen, P. J.; Baker, C. T. H.: Analysis of numerical methods for second kind Volterra equations by imbedding techniques. J. integral equations 3, 61-82 (1981) · Zbl 0451.65098