zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Research on gain scheduling. (English) Zbl 0976.93002
The paper surveys the current status of research and some future possibilities, by including classical approaches to gain scheduling, as well as recent trends, without focusing on particular engineering areas. The text is structured in seven sections as follows: (1) Introduction; (2) Gain scheduling -- provides a general presentation and comments advantages/disadvantages; (3) Linear parameter-varying (LPV) plant descriptions -- reviews two ways in which such models can arise; (4) Linearization gain scheduling -- discusses recently developed analytical aspects; (5) LPV design methods -- emphasizes connections to linear matrix-inequality-based constructions of $H_\infty$ optimal control; (6) Stability and performance; (7) Current directions. Several examples are considered and revisited in different sections.

MSC:
93-02Research monographs (systems and control)
93B51Design techniques in systems theory
93C10Nonlinear control systems
93B18Linearizability of systems
15A39Linear inequalities of matrices
WorldCat.org
Full Text: DOI
References:
[1] Apkarian, P.: On the discretization of LMI-synthesized linear parameter-varying controllers. Automatica 33, No. 4, 655-661 (1997) · Zbl 0879.93016
[2] Apkarian, P.; Adams, R.: Advanced gain-scheduling techniques for uncertain systems. IEEE transactions on control systems technology 6, No. 1, 21-32 (1998) · Zbl 0987.93028
[3] Apkarian, P.; Gahinet, P.: A convex characterization of gain-scheduled H$\infty $controllers. IEEE transactions on automatic control 40, No. 5, 853-864 (1995) · Zbl 0826.93028
[4] Apkarian, P.; Gahinet, P.; Becker, G.: Self-scheduled H-infinity control of linear parameter-varying systems: A design example. Automatica 31, No. 9, 1251-1261 (1995) · Zbl 0825.93169
[5] åström, K. J.; Wittenmark, B.: Adaptive control. (1995) · Zbl 1163.93350
[6] Bailey, R. L., Cederquist, A. L., Florek, J. J., Hart, D. L., & Meitzler, A. H. (1978). An IIEC-2 low-emission concept car. SAE Paper No. 780206, Society of Automotive Engineers.
[7] Balas, G., Fialho, I., Lee, L., Nalbantoglu, V., Packard, A., Tan, W., Wemhoff, E., Wolodkin, G., & Wu, F. (1997). Theory and application of linear parameter varying control techniques. Workshop notes: American Control Conference, June.
[8] Bamieh, B., & Giarré, L. (1999). Identification of linear parameter varying models. Proceedings of the 38th IEEE conference on decision and control, Phoenix, AZ, December. · Zbl 1007.93022
[9] Becker, G.; Packard, A.: Robust performance of linear parametrically varying systems using parametrically-dependent linear feedback. Systems & control letters 23, 205-215 (1994) · Zbl 0815.93034
[10] Bequette, W., & Doyle, F. J. (2000). A review of gain scheduled control in chemical process systems, submitted for publication.
[11] Boyd, S., El Ghaoui, L., Feron, E., & Balakrishnan, V. (1994). Linear matrix inequalities in system and control theory. Philadelphia, PA: SIAM. · Zbl 0816.93004
[12] Buschek, H. (1997). Robust autopilot design for future missile systems. Proceedings of the AIAA guidance, navigation, and control conference, New Orleans, LA. AIAA Paper No. A97-37172.
[13] Canale, R. P., Winegarden, S. R., Carlson, C. R., & Miles, D. L. (1978). General motors phase II catalyst system. SAE Paper No. 780205, Society of Automotive Engineers.
[14] Cloutier, J. R., D’Souza, C. N., & Mracek, C. P. (1996a). Nonlinear regulation and nonlinear H-infinity control via the state-dependent Riccati equation technique, Part 1, theory. Proceedings of the first international conference on nonlinear problems in aviation and aerospace. Daytona Beach, FL (pp. 117-130).
[15] Cloutier, J. R., D’Souza, C. N., & Mracek, C. P. (1996b). Nonlinear regulation and nonlinear H-infinity control via the state-dependent riccati equation technique, Part 2, examples. Proceedings of the first international conference on nonlinear problems in aviation and aerospace, Daytona Beach, FL (pp. 130-147).
[16] Cook, J. A., Grizzle, J. W., & Sun, J. (1996). Engine control. In W.S. Levine, The control handbook (pp. 1261-1274) New York: IEEE Press (Chapter 74.1).
[17] Desoer, C. A.: Slowly varying system x\dot{}=$A(t)$x. IEEE transactions on automatic control 14, No. 6, 780-781 (1969)
[18] Doyle, J. C., Wall, J. E., & Stein, G. (1982). Performance and robustness analysis for structured uncertainty. Proceedings of the 21st IEEE conference on decision and control, December (pp. 629-636).
[19] Draper, C. S.: Flight control. Journal of the royal aeronautical society 59, 451-477 (1955)
[20] Gregory, P. C. (Ed.) (1959). Proceedings of the self adaptive flight control systems symposium, Wright-Patterson AFB. OH. WADC Technical Report 59-49.
[21] Gumbleton, J. J., & Bowler, L. L. (1982). General motors computer command control system development. SAE Paper No. 82091, Society of Automotive Engineers.
[22] Howard, R. W.: Automatic flight controls in fixed wing aircraft: the first 100 years. Aeronautical journal 77, 533-562 (1973)
[23] Huang, Y., & Lu, W.-M. (1996). Nonlinear optimal control: Alternatives to Hamilton-Jacobi equation. Proceedings of the 35th Conference on Decision and Control, Kobe, Japan (pp. 3942-3947).
[24] Hyde, R. A.; Glover, K.: The application of scheduled H-infinity controllers to a vstol aircraft. IEEE transactions on automatic control 38, No. 7, 1021-1039 (1993)
[25] Källström, C. G.; åström, K. J.; Thorell, N. E.; Eriksson, J.; Sten, L.: Adaptive autopilots for tankers. Automatica 15, 241-254 (1979)
[26] Kamen, E. W.; Khargonekar, P. P.: On the control of linear systems whose coefficients are functions of parameters. IEEE transactions on automatic control 29, No. 1, 25-33 (1984) · Zbl 0593.93042
[27] Kaminer, I.; Pascoal, A.; Hallberg, E.; Silvestre, C.: Trajectory tracking for autonomous vehicles: an integrated approach to guidance and control. Journal of guidance, control, and dynamics 21, No. 1, 29-38 (1998) · Zbl 0908.93048
[28] Kaminer, I.; Pascoal, A. M.; Khargonekar, P. P.; Coleman, E.: A velocity algorithm for the implementation of gain-scheduled controllers. Automatica 31, No. 8, 1185-1191 (1995) · Zbl 0839.93037
[29] Kelemen, M.: A stability property. IEEE transactions on automatic control 31, No. 8, 766-768 (1986) · Zbl 0607.34047
[30] Kellett, M. G. (1991). Continuous scheduling of H-infinity controllers for a ms760 paris aircraft. In P.H. Hammond, Robust control system design using H-infinity and related methods (pp. 197-223). London, England: Institute of Measurement and Control.
[31] Kelly, J. H., & Evers, J. H. (1997). An interpolation strategy for scheduling dynamic compensators. Proceedings of the AIAA guidance, navigation, and control conference, New Orleans, LA. AIAA Paper No. A97-37173.
[32] Khalil, H. K.: Nonlinear systems. (1996) · Zbl 0842.93033
[33] Khalil, H. K.; Kokotovic, P. V.: On stability properties of nonlinear systems with slowly varying inputs. IEEE transactions on automatic control 36, No. 2, 229 (1991) · Zbl 0766.93068
[34] Lawrence, D. A.; Rugh, W. J.: On a stability theorem for nonlinear systems with slowly varying inputs. IEEE transactions on automatic control 35, No. 7, 860-864 (1990) · Zbl 0715.93054
[35] Lawrence, D. A.; Rugh, W. J.: Gain scheduling dynamic linear controllers for a nonlinear plant. Automatica 31, No. 3, 381-390 (1995) · Zbl 0825.93192
[36] Leith, D. J.; Leithead, W. E.: Appropriate realization of gain-scheduled controllers with application to wind turbine regulation. International of control 65, No. 2, 223-248 (1996) · Zbl 0875.93348
[37] Leith, D. J.; Leithead, W. E.; Lawrence, D. A.; Rugh, W. J.: Comments on gain scheduling dynamic linear controllers for a nonlinear plant. Automatica 34, No. 8, 1041-1043 (1998) · Zbl 0962.93055
[38] Leonessa, A., Haddad, W. M., & Chellaboina, V. (1988). Nonlinear system stabilization via stability-based switching. Proceedings of the 37th IEEE conference on decision and control, Tampa, FL (pp. 2983-2996).
[39] Masaki, K., Aono, S., Akaeda, M., & Minami, H. (1978). Development of the Nissan electronically controlled carburetor system. SAE Paper No. 780204, Society of Automotive Engineers.
[40] McConley, M. W., Appleby, B. D., Dahleh, M. A., & Feron, E. (1997). Control Lyapunov function approach to robust stabilization of nonlinear systems. Proceedings of the American control conference, Albuquerque, NM, June (pp. 416-419).
[41] Mcruer, D.; Graham, D.: Eighty years of flight control: triumphs and pitfalls of the systems approach. Journal of guidance and control 4, No. 4, 353-362 (1981)
[42] Nichols, R. A.; Reichert, R. T.; Rugh, W. J.: Gain scheduling for H-infinity controllers: A flight control example. IEEE transactions on control systems technology 1, No. 2, 69-79 (1993)
[43] Niemann, H., & Stoustrup, J. (1999). An architecture for implementation of multivariable controllers. Proceedings of the American control conference, San Diego, CA, June (pp. 4029-4032).
[44] Osder, S. S. (1996). Evolution of automatic flight controls. Material from a short course at Honeywell Air Transport Division.
[45] Packard, A.: Gain-scheduling via linear fractional transformations. Systems and control letters 22, 79-92 (1994) · Zbl 0792.93043
[46] Packard, A.; Zhou, K.; Pandey, P.; Leonhardson, J.; Balas, G.: Optimal, constant I/O similarity scaling for full-information and state-feedback control problems. Systems & control letters 19, 217-280 (1992) · Zbl 0772.49021
[47] Paddison, F. C.: The talos control system. Johns hopkins APL technical digest 3, No. 2, 154-156 (1982)
[48] Reichert, R.: Dynamic scheduling of modern-robust-control autopilot designs for missiles. IEEE control systems magazine 12, No. 5, 35-42 (1992)
[49] Rivard, J. G. (1973). Closed-loop electronic fuel injection control for the internal combustion engine. SAE Paper No. 73005, Society of Automotive Engineers.
[50] Rugh, W. J. (1983). Linearization about constant operating points: An input-output viewpoint. Proceedings of the IEEE conference on decision and control, San Antonio, TX (pp. 1165-1169).
[51] Rugh, W. J.: Analytical framework for gain-scheduling. IEEE control systems magazine 11, No. 1, 79-84 (1991)
[52] Scherer, C.; Gahinet, P.; Chilali, M.: Multiobjective output-feedback control via LMI optimization. IEEE transactions on automatic control 42, No. 7, 896-911 (1997) · Zbl 0883.93024
[53] Seiter, R. E., & Clark, R. J. (1978). Ford three-way catalyst and feedback fuel control system. SAE Paper No. 780203, Society of Automotive Engineers.
[54] Shahruz, S. M.; Behtash, S.: Design of controllers for linear parameter-varying systems by the gain scheduling technique. Journal of mathematical analysis and applications 168, No. 1, 195-217 (1992) · Zbl 0778.93027
[55] Shamma, J. S.; Athans, M.: Analysis of nonlinear gain scheduled control systems. IEEE transactions on automatic control 35, No. 8, 898-907 (1990) · Zbl 0723.93022
[56] Shamma, J. S.; Athans, M.: Guaranteed properties of gain scheduled control of linear parameter-varying plants. Automatica 27, No. 3, 898-907 (1991) · Zbl 0754.93022
[57] Shamma, J. S., & Cloutier, J. R. (1992). Trajectory scheduled missile autopilot design. Proceedings of the first IEEE conference on control applications, Dayton, OH, September.
[58] Shamma, J. S.; Xiong, D.: Set-valued methods for linear parameter varying systems. Automatica 35, No. 6, 1081-1089 (1999) · Zbl 0940.93044
[59] Stein, G.; Hartmann, G. L.; Hendrick, R. C.: Adaptive control laws for F-8 flight test. IEEE transactions on automatic control 22, No. 5, 758-767 (1977)
[60] Stilwell, D. J.; Rugh, W. J.: Interpolation of observer state feedback controllers for gain scheduling. IEEE transactions on automatic control 44, No. 6, 1225-1229 (1999) · Zbl 0955.93043
[61] Stilwell, D. J.; Rugh, W. J.: Stability preserving interpolation methods for the synthesis of gain scheduled controllers. Automatica 36, No. 5, 665-671 (2000) · Zbl 0988.93032
[62] Sureshbabu, N.; Rugh, W. J.: Output regulation with derivative information. IEEE transactions on automatic control 40, No. 10, 1755-1766 (1995) · Zbl 0843.93028
[63] Tan, H.; Rugh, W. J.: Nonlinear overtaking optimal control: sufficiency, stability, and approximation. IEEE transactions on automatic control 43, No. 12, 1703-1718 (1998) · Zbl 0954.49019
[64] Tu, K.-H., & Shamma, J. S. (1998). Nonlinear gain-scheduled control design using set-valued methods. Proceedings of the American control conference, Philadelphia, PA.
[65] Waymeyer, W. K. (1997). History information on gain scheduling. Personal communication.
[66] Wu, F., & Grigoriadis, K. M. (1999). LPV-based control of systems with amplitude and rate actuator saturation constraints. Proceedings of the American control conference, San Diego, CA, June (pp. 3191-3195).
[67] Wu, F.; Yang, X. H.; Packard, A.; Becker, G.: Induced L2-norm control for LPV systems with bounded parameter variation rates. International journal of control 6, No. 9/10, 983-998 (1996) · Zbl 0863.93074
[68] Yu, J.; Sideris, A.: H$\infty $control with parametric Lyapunov functions. Systems & control letters 30, 57-69 (1997) · Zbl 0901.93019
[69] Zhou, K.; Doyle, J. C.; Glover, K.: Robust and optimal control. (1996) · Zbl 0999.49500