zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
New Jacobi elliptic function expansion and new periodic solutions of nonlinear wave equations. (English) Zbl 0977.35094
Summary: New Jacobi elliptic functions are applied in the Jacobi elliptic function expansion method to construct the exact periodic solutions of nonlinear wave equations. It is shown that more new periodic solutions can be obtained by this method and more shock wave solutions or solitary wave solutions can be got at their limit condition.

35L70Nonlinear second-order hyperbolic equations
33C45Orthogonal polynomials and functions of hypergeometric type
35B10Periodic solutions of PDE
35C10Series solutions of PDE
Full Text: DOI
[1] Wang, M. L.: Phys. lett. A. 199, 169 (1995)
[2] Wang, M. L.; Zhou, Y. B.; Li, Z. B.: Phys. lett. A. 216, 67 (1996)
[3] Yang, L.; Zhu, Z.; Wang, Y.: Phys. lett. A. 260, 55 (1999)
[4] Yang, L.; Liu, J.; Yang, K.: Phys. lett. A. 278, 267 (2001)
[5] Parkes, E. J.; Duffy, B. R.: Phys. lett. A. 229, 217 (1997) · Zbl 1043.35521
[6] Fan, E.: Phys. lett. A. 277, 212 (2000)
[7] Hirota, R.: J. math. Phys.. 14, 810 (1973)
[8] Kudryashov, N. A.: Phys. lett. A. 147, 287 (1990)
[9] Otwinowski, M.; Paul, R.; Laidlaw, W. G.: Phys. lett. A. 128, 483 (1988)
[10] Liu, S. K.; Fu, Z. T.; Liu, S. D.; Zhao, Q.: Appl. math. Mech.. 22, 326 (2001)
[11] Yan, C.: Phys. lett. A. 224, 77 (1996)
[12] Porubov, A. V.: Phys. lett. A. 221, 391 (1996)
[13] Porubov, A. V.; Velarde, M. G.: J. math. Phys.. 40, 884 (1999)
[14] Porubov, A. V.; Parker, D. F.: Wave motion. 29, 97 (1999)
[15] S.K. Liu, Z.T. Fu, S.D. Liu et al. (2001), submitted
[16] Bowman, F.: Introduction to elliptic functions with applications. (1959) · Zbl 0052.07102
[17] Prasolov, V.; Solovyev, Y.: Elliptic functions and elliptic integrals. (1997) · Zbl 0946.11001