Statistical estimation in varying coefficient models. (English) Zbl 0977.62039

Summary: Varying coefficient models are a useful extension of classical linear models. They arise naturally when one wishes to examine how regression coefficients change over different groups characterized by certain covariates such as age. The appeal of these models is that the coefficient functions can easily be estimated via a simple local regression. This yields a simple one-step estimation procedure.
We show that such a one-step method cannot be optimal when different coefficient functions admit different degrees of smoothness. This drawback can be repaired by using our proposed two-step estimation procedure. The asymptotic mean-squared error for the two-step procedure is obtained and is shown to achieve the optimal rate of convergence. A few simulation studies show that the gain by the two-step procedure can be quite substantial. The methodology is illustrated by an application to an environmental data set.


62G07 Density estimation
62J12 Generalized linear models (logistic models)
62G20 Asymptotic properties of nonparametric inference


Full Text: DOI


[1] Breiman, L. and Friedman, J. H. (1985). Estimating optimal transformations for multiple regression and correlation (withdiscussion). J. Amer. Statist. Assoc. 80 580-619. JSTOR: · Zbl 0594.62044 · doi:10.2307/2288473
[2] Carroll, R. J., Fan, J., Gijbels, I. and Wand M. P. (1997). Generalized partially linear singleindex models. J. Amer. Statist. Assoc. 92 477-489. JSTOR: · Zbl 0890.62053 · doi:10.2307/2965697
[3] Chen, R. and Tsay, R. S. (1993). Functional-coefficient autoregressive models. J. Amer. Statist. Assoc. 88 298-308. JSTOR: · Zbl 0776.62066 · doi:10.2307/2290725
[4] Cleveland, W. S., Grosse, E. and Shyu, W. M. (1991). Local regression models. In Statistical Models in S (J. M. Chambers, and T. J. Hastie, eds.) 309-376. Wadsworth / Brooks-Cole, Pacific Grove, CA.
[5] Fan, J. and Gijbels, I. (1995). Data-driven bandwidthselection in local polynomial fitting: variable bandwidthand spatial adaptation. J. Roy. Statist. Soc. Ser. B 57 371-394. JSTOR: · Zbl 0813.62033
[6] Fan, J. and Gijbels, I. (1996). Local Polynomial Modelling and Its Applications. Chapman and Hall, London. · Zbl 0873.62037
[7] Fan, J., Härdle, W. and Mammen, E. (1998). Direct estimation of additive and linear components for high dimensional data. Ann. Statist. 26 943-971. · Zbl 1073.62527
[8] Fan, J. and Zhang, J. (2000). Two-step estimation of functional linear models withapplications to longitudinal data. J. Roy. Statist. Soc. Ser. B 62.
[9] Friedman, J. H. (1991). Multivariate adaptive regression splines (withdiscussion). Ann. Statist. 19 1-141. · Zbl 0765.62064 · doi:10.1214/aos/1176347963
[10] Green, P. J. and Silverman, B. W. (1994). Nonparametric Regression and Generalized Linear Models: A Roughness Penalty Approach. Chapman and Hall, London. · Zbl 0832.62032
[11] Gu, C. and Wahba, G. (1993). Smoothing spline ANOVA with component-wise Bayesian ”confidence intervals.” J. Comput. Graph. Statist. 2 97-117. JSTOR: · doi:10.2307/1390957
[12] Härdle, W. and Stoker, T. M. (1989). Investigating smooth multiple regression by the method of average derivatives. J. Amer. Statist. Assoc. 84 986-995. JSTOR: · Zbl 0703.62052 · doi:10.2307/2290074
[13] Hastie, T. J. and Tibshirani, R. (1990). Generalized Additive Models. Chapman and Hall, London. · Zbl 0747.62061
[14] Hastie, T. J. and Tibishirani, R. J. (1993). Varying-coefficient models. J. Roy. Statist. Soc. Ser. B 55, 757-796. JSTOR: · Zbl 0796.62060
[15] Heckman, J., Ichimura, H., Smith, J. and Todd, P. (1998). Characterizing selection bias using experimental data. Econometrica, 66 1017-1098. JSTOR: · Zbl 1055.62573 · doi:10.2307/2999630
[16] Hoover, D. R., Rice, J. A., Wu, C. O. and Yang, L. P. (1997). Nonparametric smoothing estimates of time-varying coefficient models withlongitudinal data. Biometrika 85 809-822. JSTOR: · Zbl 0921.62045 · doi:10.1093/biomet/85.4.809
[17] Li, K. C. (1991). Sliced inverse regression for dimension reduction (withdiscussion). J. Amer. Statist. Assoc. 86 316-342. JSTOR: · Zbl 0742.62044 · doi:10.2307/2290563
[18] Mack, Y. P., Silverman, B. W. (1982). Weak and Strong uniform consistency of kernel regression estimates. Z. Wahrsch. Verw. Gebiete 61 405-415. · Zbl 0495.62046 · doi:10.1007/BF00539840
[19] Ruppert, D. (1997). Empirical-bias bandwidths for local polynomial nonparametric regression and density estimation. J. Amer. Statist. Assoc. 92 1049-1062. JSTOR: · Zbl 1067.62531 · doi:10.2307/2965570
[20] Ruppert, D., Sheather, S. J. and Wand, M. P. (1995). An effective bandwidthselector for local least squares regression. J. Amer. Statist. Assoc. 90 1257-1270. JSTOR: · Zbl 0868.62034 · doi:10.2307/2291516
[21] Shumway, R. H. (1988). Apllied Staistical Time Series Analysis. Prentice-Hall, Englewood Cliffs, NJ.
[22] Stone, C. J., Hansen, M., Kooperberg, C. and Truong, Y. K. (1997). Polynomial splines and their tensor products in extended linear modeling. Ann. Statist. 25 1371-1470. · Zbl 0924.62036 · doi:10.1214/aos/1031594728
[23] Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions (with discussion). J. Roy. Statist. Soc. Ser. B 36 111-147. JSTOR: · Zbl 0308.62063
[24] Wahba, G. (1984). Partial spline models for semiparametric estimation of functions of several variables. In Statistical Analysis of Time Series. Proceedings of the Japan-U.S. Joint Seminar, Tokyo 319-329. Institute of Statistical Mathematics, Tokyo.
[25] Wand, M. P. and Jones, M. C. (1995). Kernel Smoothing. Chapman and Hall, London. · Zbl 0854.62043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.