Iancu, E.; Leonidov, A.; McLerran, L. The renormalization group equation for the color glass condensate. (English) Zbl 0977.81528 Phys. Lett., B 510, No. 1-4, 133-144 (2001). Summary: We present an explicit and simple form of the renormalization group equation which governs the quantum evolution of the effective theory for the Color Glass Condensate (CGC). This is a functional Fokker-Planck equation for the probability density of the color field which describes the CGC in the covariant gauge. It is equivalent to the Euclidean time evolution equation for a second quantized current-current Hamiltonian in two spatial dimensions. The quantum corrections are included in the leading log approximation, but the equation is fully non-linear with respect to the generally strong background field. In the weak field limit, it reduces to the BFKL equation, while in the general non-linear case it generates the evolution equations for Wilson-line operators previously derived by Balitsky and Kovchegov within perturbative QCD. Cited in 23 Documents MSC: 81V05 Strong interaction, including quantum chromodynamics 81T17 Renormalization group methods applied to problems in quantum field theory Keywords:effective theory quantum evolution; functional Fokker-Planck equation; leading log approximation PDF BibTeX XML Cite \textit{E. Iancu} et al., Phys. Lett., B 510, No. 1--4, 133--144 (2001; Zbl 0977.81528) Full Text: DOI arXiv OpenURL References: [1] Lipatov, L.N.; Kuraev, E.A.; Lipatov, L.N.; Fadin, V.S.; Balitsky, Ya.Ya.; Lipatov, L.N., Sov. J. nucl. phys., Sov. phys. JETP, Sov. J. nucl. phys., 28, 822, (1978) [2] Breitweg, J., Eur. phys. J. C, 6, 43, (1999) [3] Gribov, L.V.; Levin, E.M.; Ryskin, M.G., Phys. rep., 100, 1, (1983) [4] Mueller, A.H.; Qiu, J.-W., Nucl. phys. B, 268, 427, (1986) [5] McLerran, L.; Venugopalan, R.; McLerran, L.; Venugopalan, R.; McLerran, L.; Venugopalan, R., Phys. rev. D, Phys. rev. D, Phys. rev. D, 50, 2225, (1994) [6] Mueller, A.H., Nucl. phys. B, 558, 285, (1999) [7] Jalilian-Marian, J.; Kovner, A.; McLerran, L.; Weigert, H., Phys. rev. D, 55, 5414, (1997) [8] Kovchegov, Yu.V.; Mueller, A.H., Nucl. phys. B, 529, 451, (1998) [9] Iancu, E.; Leonidov, A.; McLerran, L., to appear in Nucl. Phys. A [10] Kovner, A.; McLerran, L.; Weigert, H.; Kovner, A.; McLerran, L.; Weigert, H., Phys. rev. D, Phys. rev. D, 52, 6231, (1995) [11] Kovchegov, Yu.V.; Kovchegov, Yu.V., Phys. rev. D, Phys. rev. D, 55, 5445, (1997) [12] Krasnitz, A.; Venugopalan, R., Phys. rev. lett., 84, 4309, (2000) [13] Jalilian-Marian, J.; Kovner, A.; Leonidov, A.; Weigert, H.; Jalilian-Marian, J.; Kovner, A.; Leonidov, A.; Weigert, H., Nucl. phys. B, Phys. rev. D, 59, 014014, (1999) [14] Jalilian-Marian, J.; Kovner, A.; Weigert, H.; Jalilian-Marian, J.; Kovner, A.; Leonidov, A.; Weigert, H.; Jalilian-Marian, J.; Kovner, A.; Leonidov, A.; Weigert, H., Phys. rev. D, Phys. rev. D, Phys. rev. D, 59, 099903, (1999), Erratum [15] Kovner, A.; Milhano, J.G.; Weigert, H., Phys. rev. D, 62, 114005, (2000) [16] Balitsky, I., Nucl. phys. B, 463, 99, (1996) [17] Kovchegov, Yu.V.; Kovchegov, Yu.V., Phys. rev. D, Phys. rev. D, 61, 074018, (2000) [18] Mueller, A.H.; Mueller, A.H., Nucl. phys. B, Nucl. phys. B, 437, 107, (1995) [19] Levin, E.; Tuchin, K.; Levin, E.; Tuchin, K.; Levin, E.; Tuchin, K.; Braun, M., Nucl. phys. B, Eur. phys. J. C, 16, 337, (2000) [20] Weigert, H. [21] E. Ferreiro, E. Iancu, A. Leonidov, L. McLerran, Nonlinear Gluon Evolution in the Color Glass Condensate: II, in preparation · Zbl 0994.81133 [22] Parisi, G.; Sourlas, N., Phys. rev. lett., 43, 744, (1979) [23] Ayala, A.; Jalilian-Marian, J.; McLerran, L.; Venugopalan, R., Phys. rev. D, 52, 2935, (1995) [24] Hebecker, A.; Weigert, H., Phys. lett. B, 432, 215, (1998) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.