×

Invariants of orthogonal \(G\)-modules from the character table. (English) Zbl 0978.20004

For a finite group \(G\) any \(\mathbb{Q} G\)-module \(V\) is uniquely determined by its character \(\chi_V\). Let \(q\) be a \(G\)-invariant quadratic form on \(V\). In the paper practical methods are developed to obtain information on the quadratic space \(\varphi=(V,q)\) and on the Clifford algebra \(C(\varphi)\) from the character \(\chi_V\). Several examples are given to illustrate the method.

MSC:

20C10 Integral representations of finite groups
20C15 Ordinary representations and characters
11E88 Quadratic spaces; Clifford algebras
15A63 Quadratic and bilinear forms, inner products
15A66 Clifford algebras, spinors

Software:

GAP

References:

[1] Conway J. H., Atlas of finite groups (1985)
[2] DOI: 10.1112/plms/s3-24.3.470 · Zbl 0274.20053 · doi:10.1112/plms/s3-24.3.470
[3] DOI: 10.1016/0021-8693(82)90003-5 · Zbl 0479.20005 · doi:10.1016/0021-8693(82)90003-5
[4] DOI: 10.1090/S0894-0347-1990-1071117-8 · doi:10.1090/S0894-0347-1990-1071117-8
[5] Hasse H., J. reine angew. Math. 153 pp 158– (1924)
[6] Jansen C., An atlas of Brauer characters (1995) · Zbl 0831.20001
[7] DOI: 10.1007/978-3-642-75401-2 · doi:10.1007/978-3-642-75401-2
[8] Nebe G., Orthogonale Darstellungen end–licher Gruppen und Gruppenringe (1999) · Zbl 1052.20005
[9] DOI: 10.1006/jabr.1999.8114 · Zbl 0954.20005 · doi:10.1006/jabr.1999.8114
[10] Reiner I., Maximal orders (1975)
[11] DOI: 10.1007/978-3-642-69971-9 · doi:10.1007/978-3-642-69971-9
[12] Schonert M., GAP: Groups, algorithms, and programming,, 4. ed. (1994)
[13] DOI: 10.4153/CJM-1973-049-7 · Zbl 0264.20010 · doi:10.4153/CJM-1973-049-7
[14] DOI: 10.2307/2946564 · Zbl 0792.20015 · doi:10.2307/2946564
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.