Nebe, Gabriele Invariants of orthogonal \(G\)-modules from the character table. (English) Zbl 0978.20004 Exp. Math. 9, No. 4, 623-629 (2000). For a finite group \(G\) any \(\mathbb{Q} G\)-module \(V\) is uniquely determined by its character \(\chi_V\). Let \(q\) be a \(G\)-invariant quadratic form on \(V\). In the paper practical methods are developed to obtain information on the quadratic space \(\varphi=(V,q)\) and on the Clifford algebra \(C(\varphi)\) from the character \(\chi_V\). Several examples are given to illustrate the method. Reviewer: Kanat Abdukhalikov (Dortmund) Cited in 1 ReviewCited in 4 Documents MSC: 20C10 Integral representations of finite groups 20C15 Ordinary representations and characters 11E88 Quadratic spaces; Clifford algebras 15A63 Quadratic and bilinear forms, inner products 15A66 Clifford algebras, spinors Keywords:finite groups; characters; integral representations; Clifford algebras; quadratic forms Software:GAP × Cite Format Result Cite Review PDF Full Text: DOI EuDML References: [1] Conway J. H., Atlas of finite groups (1985) [2] DOI: 10.1112/plms/s3-24.3.470 · Zbl 0274.20053 · doi:10.1112/plms/s3-24.3.470 [3] DOI: 10.1016/0021-8693(82)90003-5 · Zbl 0479.20005 · doi:10.1016/0021-8693(82)90003-5 [4] DOI: 10.1090/S0894-0347-1990-1071117-8 · doi:10.1090/S0894-0347-1990-1071117-8 [5] Hasse H., J. reine angew. Math. 153 pp 158– (1924) [6] Jansen C., An atlas of Brauer characters (1995) · Zbl 0831.20001 [7] DOI: 10.1007/978-3-642-75401-2 · doi:10.1007/978-3-642-75401-2 [8] Nebe G., Orthogonale Darstellungen end–licher Gruppen und Gruppenringe (1999) · Zbl 1052.20005 [9] DOI: 10.1006/jabr.1999.8114 · Zbl 0954.20005 · doi:10.1006/jabr.1999.8114 [10] Reiner I., Maximal orders (1975) [11] DOI: 10.1007/978-3-642-69971-9 · doi:10.1007/978-3-642-69971-9 [12] Schonert M., GAP: Groups, algorithms, and programming,, 4. ed. (1994) [13] DOI: 10.4153/CJM-1973-049-7 · Zbl 0264.20010 · doi:10.4153/CJM-1973-049-7 [14] DOI: 10.2307/2946564 · Zbl 0792.20015 · doi:10.2307/2946564 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.