×

The third boundary value problem in potential theory for domains with a piecewise smooth boundary. (English) Zbl 0978.31003

Author’s summary: The paper investigates the third boundary value problem \(\frac{\partial u}{\partial n}+\lambda u=\mu\) for the Laplace equation by means of potential theory. The solution is sought in the form of the Newtonian potential (1), (2), where \(\nu\) is the unknown signed measure on the boundary. The boundary condition (4) is weakly characterized by a signed measure \({\mathcal T}\nu\). Denote by \({\mathcal T}:\nu\to{\mathcal T}\nu\) the corresponding operator on the space of signed measures on the boundary of the investigated domain \(G\). If there is \(\alpha\neq 0\) such that the essential spectral radius of \((\alpha I-{\mathcal T})\) is smaller than \(|\alpha|\) (for example, if \(G\subset \mathbb{R}^3\) is a domain “with a piecewise smooth boundary” and the restriction of the Newtonian potential \({\mathcal U} \lambda\) on \(\partial G\) is a finite continuous functions) then the third problem is uniquely solvable in the form of a single layer potential (1) with the only exception which occurs if we study the Neumann problem for a bounded domain. In this case the problem is solvable for the boundary condition \(\mu\in{\mathcal C}'\) for which \(\mu(\partial G)=0\).
Reviewer: A.Kufner (Praha)

MSC:

31B20 Boundary value and inverse problems for harmonic functions in higher dimensions
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
35J25 Boundary value problems for second-order elliptic equations
PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] T.S. Angell, R.E. Kleinman, J. Král: Layer potentials on boundaries with corners and edges. Čas. pěst. mat. 113 (1988), 387-402. · Zbl 0697.31005
[2] K. Arbenz: Integralgleichungen für einige Randwertprobleme für Gebiete mit Ecken. Promotionsarbeit Nr. 2777, Eidgenössische Technishe Hochschule in Zürich 1958, 1-41. · Zbl 0084.09603
[3] M. Brelot: Élements de la théorie classique du potential. Les cours de Sorbone, Paris, 1959. · Zbl 0084.30903
[4] Ju. D. Burago, V.G. Maz’ya: Some questions in potential theory and function theory for regions with irregular boundaries (Russian). Zapiski nauč. sem. Leningrad. otd. MIAN 3 (1967). · Zbl 0172.14903
[5] Ju. D. Burago, V.G. Maz’ya and V.D. Sapožnikova: On the theory of potentials of a double and a simple layer for regions with irregular boundaries (Russian). Problems Math. Anal. Boundary Value Problems Integr. Equations. (Russian), 3-34, Izdat. Leningrad. Univ., Leningrad, 1966.
[6] T. Carleman: Über das Neumann-Poincarésche Problem für ein Gebeit mit Ecken, Inaugural-Dissertation. Uppsala, 1916. · JFM 46.0732.04
[7] I.I. Daniljuk: Nonregular Boundary Value Problems in the Plane. Nauka, Moskva, 1975.
[8] E. De Giorgi: Su una teoria generale della misura \((r-1)\)-dimensionale in uno spazi ad \(r\) dimensioni. Annali di Mat. Pura ed Appl. Ser. 4, 36 (1954), 191-213. · Zbl 0055.28504
[9] E. De Giorgi: Nuovi teoremi relativi alle misure \((r-1)\)-dimensionali in uno spazi ad \(r\) dimensioni. Ricerche Mat. 4 (1955), 95-113. · Zbl 0066.29903
[10] M. Dont, E. Dontová: Invariance of the Fredholm radius of an operator in potential theory. Čas. pěst. mat. 112 (1987), no. 3, 269-283. · Zbl 0657.31004
[11] N. Dunford, J.T. Schwarz: Linear Operators. Interscience, New York, 1963.
[12] J. Elschner: The double-layer potential operator over polyhedral domains I: Solvability in weighted Sobolev spaces. Applicable Analysis 45 (1992), 117-134. · Zbl 0749.31002
[13] E. Fabes: Layer potential methods for boundary value problems on Lipschitz domains, in J. Král, J. Lukeš, I. Netuka and J. Veselý (eds.): Potential Theory. Surveys and Problems. Proceedings, Prague 1987. Lecture Notes in Mathematics 1344. Springer-Verlag, Berlin-Heidelberg-New York, 1988. · Zbl 0666.31007
[14] E.B. Fabes, M. Jodeit Jr., J.E. Lewis: Double layer potentials for domain with corners and edges. Indiana Univ. Math. J. 26 (1977), 95-114. · Zbl 0363.35010
[15] E. Fabes, M. Sand, J.K. Seo: The spectral radius of the classical layer potentials on convex domains. Partial Differential Equations With Minimal Smoothness and Applications, 129-137, IMA Vol. Math. Appl. 42, Springer, New York, 1992. · Zbl 0820.35025
[16] H. Federer: A note on the Gauss-Green theorem. Proc. Amer. Math. Soc. 9 (1958), 447-451. · Zbl 0087.27302
[17] H. Federer: Geometric Measure Theory. Springer-Verlag, 1969. · Zbl 0176.00801
[18] H. Federer: The Gauss-Green theorem. Trans. Amer. Math. Soc. 58 (1945), 44-76. · Zbl 0060.14102
[19] N.V. Grachev: Representations and estimates for inverse operators of the potential theory integral equations in a polyhedron. Potential Theory (Nagoya, 1990), 201-206. de Gruyter, Berlin, 1992. · Zbl 0763.31001
[20] N.V. Grachev, V.G. Maz’ya: On the Fredholm radius for operators of double-layer type on the piece-wise smooth boundary (Russian). Vest. Leningr. un. mat. mech. (1986), no. 4, 60-64.
[21] N.V. Grachev, V.G. Maz’ya: Representations and estimates for inverse operators of the potential theory integral equations on surfaces with conic points. Soobstch. Akad. Nauk Gruzin SSR 132 (1988), 21-23. · Zbl 0692.31006
[22] N.V. Grachev, V.G. Maz’ya: Estimates for kernels of the inverse operators of the integral equations of elasticity on surfaces with conic points. Preprint N26, Akad. Nauk SSSR. Inst. of Engin. Studies, Leningrad, 1989.
[23] N.V. Grachev, V.G. Maz’ya: On invertibility of the boundary integral operators of elasticity on surfaces with conic points in the spaces generated by norms \(C\), \(C^\alpha \), \(L_p\), Preprint N30, Akad. Nauk SSSR, Inst. of Engin. Studies, Leningrad, 1990.
[24] P.R. Halmos: Finite-Dimensional Vector Spaces. D. van Nostrand, Princeton-Toronto–London-New York, 1963. · Zbl 0107.01501
[25] D.S. Jerison and C.E. Kenig: The Dirichlet problem in non smooth domains. Annals of Mathematics 113 (1981), 367-382. · Zbl 0434.35027
[26] D.S. Jerison and C.E. Kenig: The Neumann problem in Lipschitz domains. Bulletin of AMS 4 (1981), 203-207. · Zbl 0471.35026
[27] K. Jörgens: Lineare Integraloperatoren. B.G. Teubner, Stuttgart, 1970. · Zbl 0207.44602
[28] J. Král: Integral operators in potential theory. Lecture Notes in Mathematics 823. Springer-Verlag, Berlin-Heidelberg-New York, 1980.
[29] J. Král: The Fredholm radius of an operator in potential theory. Czechoslovak Math. J. 15(90) (1965), 454-473, 565-588. · Zbl 0145.37003
[30] J. Král: Flows of heat and the Fourier problem. Czechoslovak Math. J. 20(95) (1970), 556-597. · Zbl 0213.38203
[31] J. Král: Note on sets whose characteristic functions have singed measure for their partial derivatives. Čas. pěst. mat. 86 (1961), 178-194. · Zbl 0099.04304
[32] J. Král: The Fredholm method in potential theory. Trans. Amer. Math. Soc. 125 (1966), 511-547. · Zbl 0149.07906
[33] J. Král, W.L. Wendland: Some example concerning applicability of the Fredholm-Radon method in potential theory. Aplikace matematiky 31 (1986), 293-308. · Zbl 0615.31005
[34] N.L. Landkof: Fundamentals of Modern Potential Theory. Izdat. Nauka, Moscow, 1966.
[35] V.G. Maz’ya: Boundary integral equations. Sovremennyje problemy matematiki, fundamental’nyje napravlenija, t. 27. Viniti, Moskva, 1988.
[36] V.G. Maz’ya: Boundary integral equations, Encyclopedia of Mathematical Sciences. vol. 27, Springer-Verlag, 1991.
[37] V.G. Maz’ya, B.A. Plamenevsky: The first boundary-value problem for the classical equations of the mathematical physics in domain with piece-wise smooth boundary. I, II. Z. Anal. Anwend. 2 (1983), no. 4, 335-359, No. 6, 523-551. · Zbl 0532.35065
[38] W. McLean: Boundary integral methods for the Laplace equation. Thesis. Australian National University, 1985.
[39] D. Medková: On the convergence of Neumann series for noncompact operators. Czechoslovak Math. J. 41(116) (1991), 312-316. · Zbl 0754.47005
[40] D. Medková: Invariance of the Fredholm radius of the Neumann operator. Čas. pěst. mat. 115 (1990), no. 2, 147-164. · Zbl 0707.35049
[41] D. Medková: On essential norm of Neumann operator. Mathematica Bohemica 117 (1992), no. 4, 393-408. · Zbl 0773.31006
[42] S.G. Michlin: Integralnyje uravnenija i ich prilozhenija k nekotorym problemam mekhaniki, matematicheskoj fiziki i tekhniki. Moskva, 1949.
[43] I. Netuka: The Robin problem in potential theory. Comment. Math. Univ. Carolinae 12 (1971), 205-211. · Zbl 0215.42602
[44] I. Netuka: Generalized Robin problem in potential theory. Czechoslovak Math. J. 22(97) (1972), 312-324. · Zbl 0241.31008
[45] I. Netuka: An operator connected with the third boundary value problem in potential theory. Czechoslovak Math. J. 22(97) (1972), 462-489. · Zbl 0241.31009
[46] I. Netuka: The third boundary value problem in potential theory. Czechoslovak Math. J. 22(97) (1972), 554-580. · Zbl 0242.31007
[47] J. Plemelj: Potentialtheoretische Untersuchungen. Leipzig, 1911. · JFM 42.0828.10
[48] J. Radon: Über lineare Funktionaltransformationen und Funktionalgleichungen. Collected Works. vol. 1, 1987. · JFM 47.0385.01
[49] J. Radon: Über Randwertaufgaben beim logarithmischen Potential. Collected Works. vol. 1, 1987. · JFM 47.0457.01
[50] A. Rathsfeld: The invertibility of the double layer potential in the space of continuous functions defined on a polyhedron: The panel method. Applicable Analysis 45 (1992), no. 1-4, 135-177. · Zbl 0749.31003
[51] S. Rempel: Corner singularity for transmission problems in three dimensions. Integral Equations and Operator Theory 12 (1989), 835-854. · Zbl 0695.47046
[52] S. Rempel and G. Schmidt: Eigenvalues for spherical domains with corners via boundary integral equations. Integral Equations Oper. Theory 14 (1991), 229-250. · Zbl 0732.35048
[53] F. Riesz, B. Sz. Nagy: Leçons d’analyse fonctionelle. Budapest, 1952. · Zbl 0046.33103
[54] S. Saks: Theory of the Integral. Hafner Publishing Comp., New York, 1937. · Zbl 0017.30004
[55] V.D. Sapožnikova: Solution of the third boundary value problem by the method of potential theory for regions with irregular boundaries (Russian), Problems Math. Anal. Boundary Value Problems Integr. Equations (Russian), 35-44. Izdat. Leningrad. Univ., Leningrad, 1966.
[56] M. Schechter: Principles of Functional Analysis. Academic Press, 1973. · Zbl 0211.14501
[57] L. Schwartz: Théorie des distributions. Hermann, Paris, 1950. · Zbl 0037.07301
[58] N. Suzuki: On the convergence of Neumann series in Banach space. Math. Ann. 220 (1976), 143-146. · Zbl 0304.47016
[59] A.E. Taylor: Introduction to Functional Analysis. New York, 1967.
[60] G.C. Verchota: Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in Lipschitz domains. Journal of Functional Analysis 59 (1984), 572-611. · Zbl 0589.31005
[61] K. Yosida: Functional Analysis. Springer-Verlag, Berlin, 1965. · Zbl 0126.11504
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.