zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Almost periodic type solutions of differential equations with piecewise constant argument via almost periodic type sequences. (English) Zbl 0978.34039
The aim of this paper is to characterize the existence of almost-periodic, asymptotically almost-periodic, and pseudo almost-periodic solutions to differential equations with piecewise constant argument of the form: $${dx\over dt}= f(t, x(t), x([t]), x([t- 1]),\dots, x([t- k])),\quad t\in J,\tag 1$$ where $k$ is a positive integer, $f\in C(J\times \Omega,\bbfR^d)$, $[\cdot]$ denotes the greatest integer function. There are used the following notations: $H(f)$ -- the hull of $f\in C(\bbfR, \bbfR^d)$; $AP(\bbfR\times \Omega)$ -- the set of all almost-periodic functions in $t\in\bbfR$ uniformly for $x$ in compact subsets of $\Omega$; $AAP_0(\bbfR^+\times \Omega)= \{f\in C(\bbfR^+\times \Omega,\bbfR^d): \lim_{t\to+\infty} f(t,x)= 0$, uniformly for $x$ in compact subsets of $\Omega\}$; $AAP(\bbfR^+\times \Omega)$ -- the set of all asymptotically almost-periodic functions; $PAP_0(\bbfR\times \Omega)= \{\varphi\in C(\bbfR\times \Omega, \bbfR^d): m(|\varphi|)= \lim_{T\to+\infty} {1\over 2T} \int^T_{-T} |\varphi(t,x)|dt= 0$ uniformly for $x$ in compact subsets of $\Omega\}$; $PAP(\bbfR\times \Omega)$ -- the set of all pseudo almost-periodic functions; $AP(Z)$ -- the set of all almost-periodic sequences; $AAP(Z^+)$ -- the set of all asymptotically almost-periodic sequences; $PAP(Z)$ -- the set of all pseudo almost-periodic sequences. A first result states that if $f\in AP(\bbfR\times \Omega_0)$ in equation (1) for a compact $\Omega_0\subset \Omega$, all equations $${dx\over dt}= g(t, x(t), x([t]), x([t- 1]),\dots, x([t- k])),\quad t\in\bbfR,$$ with $g\in H(t)$ have unique solutions to initial value problems, where the initial value condition is $x(j)= x_j$, $j= 0,-1,-2,\dots, -k$, and $\varphi(t)$ is a solution to (1) with $\varphi(\bbfR)^{k+2}\subset \Omega_0$, then $\varphi\in AP(\bbfR)$ if and only if $\{\varphi(n)\}_{n\in Z}\in AP(Z)$. Later, if $f\in PAP_0(\bbfR^+\times \Omega)$ in equation (1) satisfying a Lipschitz condition on $\Omega$, and $\varphi(t)$ is a solution to (1) with $\varphi(\bbfR)^{k+2}\subset\Omega$, then $\varphi\in AAP_0(\bbfR^+)$ if and only if $\{\varphi(n)\}_{n\in Z}\in PAP_0(Z^+)$. Another result states that if $f\in PAP(\bbfR\times \Omega_0)$ $(AAP(\bbfR^+\times \Omega_0))$ in equation (1) for a compact subset $\Omega_0\subset \Omega$, $f$ and its almost-periodic component $f_1$ satisfy a Lipschitz condition on $\Omega_0$, and $\varphi(t)$ is a solution to (1) with $\varphi(\bbfR)^{k+2}\subset \Omega_0$, then $\varphi\in PAP(\bbfR)$ $(AAP(\bbfR^+))$ if and only if $\{\varphi(n)\}_{n\in Z}\in PAP(Z)$ $(AAP(Z^+))$.

MSC:
34C27Almost and pseudo-almost periodic solutions of ODE
WorldCat.org
Full Text: DOI
References:
[1] Aftabizadeh, A. R.; Wiener, J.; Xu, J. M.: Oscillatory and periodic solutions of delay differential equations with piecewise constant argument. Proc. amer. Math. soc. 99, 673-679 (1987) · Zbl 0631.34078
[2] Cooke, K. L.; Wiener, J.: A survey of differential equations with piecewise constant argument. Lecture notes in mathematics 1475, 1-15 (1991) · Zbl 0737.34045
[3] Wiener, J.: Generalized solutions of functional differential equations. (1993) · Zbl 0874.34054
[4] Busenberg, S.; Cooke, K. L.: Models of vertically transmitted diseases with sequential-continuous dynamics. Nonlinear phenomena in mathematical sciences, 179-187 (1982) · Zbl 0512.92018
[5] Meisters, G. H.: On almost periodic solutions of a class of differential equations. Proc. amer. Math. soc. 10, 113-119 (1959) · Zbl 0092.30401
[6] Opial, Z.: Sur LES solutions presque-periodiques d’une classe d’equations differentielles. Ann. polon. Math. 9, 157-181 (1960/1961) · Zbl 0098.28803
[7] Fink, A. M.: Almost periodic differential equations. Lecture notes in mathematics 377 (1974) · Zbl 0325.34039
[8] Basit, B.; Zhang, C.: New almost periodic type functions and solutions of differential equations. Can. J. Math. 48, No. 6, 1138-1153 (1996) · Zbl 0880.43009
[9] Zhang, C.: Pseudo almost-periodic solutions of some differential equations. J. math. Anal. appl. 181, 62-76 (1994) · Zbl 0796.34029
[10] Zhang, C.: Integration of vector-valued pseudo-almost periodic functions. Proc. amer. Math. soc. 121, 167-174 (1994) · Zbl 0818.42003
[11] Dads, E. Ait; Arino, O.: Exponential dichotomy and existence of pseudo almost periodic solutions of some differential equations. Nonlinear analysis, TMA 27, No. 4, 369-386 (1996) · Zbl 0855.34055
[12] Dads, E. Ait; Ezzinbi, K.; Arino, O.: Pseudo almost periodic solutions for some differential equations in a Banach space. Nonlinear analysis, TMA 28, No. 7, 1141-1155 (1997) · Zbl 0874.34041
[13] J. Hong, R. Obaya and A. Sanz, Almost periodic type solutions of some differential equations with piecewise constant arguments, Nonlinear Analysis, TMA (to appear). · Zbl 0996.34062
[14] Yuan, R.; Hong, J.: The existence of almost periodic solutions for a class of differential equations with piecewise constant argument. Nonlinear analysis, TMA 28, No. 8, 1439-1450 (1997) · Zbl 0869.34038
[15] Hong, J.; Núñez, C.: On the almost periodic type difference equations. Mathl. comput. Modelling 28, No. 12, 21-31 (1998) · Zbl 0992.39003
[16] Carvalho, L. A. V.; Cooke, K. L.: A nonlinear equation with piecewise continuous argument. Differential and integral equations, No. 1, 359-367 (1988) · Zbl 0723.34061