×

zbMATH — the first resource for mathematics

Multidimensional Toda-type systems. (English. Russian original) Zbl 0978.37505
Theor. Math. Phys. 112, No. 2, 999-1022 (1997); translation from Teor. Mat. Fiz. 112, No. 2, 254-282 (1997).
Summary: On the basis of Lie algebraic and differential geometry methods, a wide class of multidimensional nonlinear systems of partial differential equations is obtained and an integration scheme for such equations is proposed.

MSC:
37J99 Dynamical aspects of finite-dimensional Hamiltonian and Lagrangian systems
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] A. N. Leznov and M. V. Saveliev,Group-Theory Methods for Integration of Nonlinear Dynamical Systems. Basel, Birkhäuser (1992). · Zbl 1194.37088
[2] A. V. Razumov and M. V. Saveliev,Commun. Anal. Geom.,2, 461 (1994).
[3] A. V. Razumov and M. V. Saveliev,Lie Algebras, Geometry, and Toda Type Systems, Cambridge Univ., Cambridge (1997).
[4] J.-L. Gervais and M. V. Saveliev,Nucl. Phys. B,453, 449 (1995). · doi:10.1016/0550-3213(95)00444-W
[5] L. A. Ferreira, J.-L. Gervais, J. S. Guillen, and M. V. Saveliev,Nucl. Phys. B,470, 236 (1996). · Zbl 1003.81552 · doi:10.1016/0550-3213(96)00146-0
[6] S. Cecotti and C. Vafa,Nucl. Phys. B,367, 359 (1991). · Zbl 1136.81403 · doi:10.1016/0550-3213(91)90021-O
[7] B. Dubrovin,Commun. Math. Phys.,152, 539 (1993). · Zbl 0771.53042 · doi:10.1007/BF02096618
[8] J.-L. Gervais and Y. Matsuo,Commun. Math. Phys.,152, 317 (1993). · Zbl 0770.53020 · doi:10.1007/BF02098302
[9] G. Darboux,Leçons sur les Systèmes Orthogonaux et les Coordonnées Curvilignes, Gauthier-Villars, Paris (1910);Lecons sur la Théorie Générale des Surfaces et les Applications Géométriques du Calcul Infinitésimal. Vols. 1–4, Gauthier-Villars, Paris (1887–1896).
[10] L. Bianchi,Lezioni di Geometria Differenziale, Vol. 2, Part 2, Zanichelli, Bologna (1924);Sisteme Tripli Ortogonali, Opere, Vol. 3, Cremonese, Roma (1955).
[11] Yu. A. Aminov,Mat. Sb.,39, 359 (1981). · Zbl 0461.53034 · doi:10.1070/SM1981v039n03ABEH001521
[12] K. Tenenblat and C.-L. Terng,Ann. Math.,111, 477 (1980); · Zbl 0462.35079 · doi:10.2307/1971105
[13] C.-L. Terng,Ann. Math.,111, 491 (1980). · Zbl 0447.53001 · doi:10.2307/1971106
[14] M. V. Saveliev,Theor. Math. Phys.,69, 1234 (1986);Dokl. Akad. Nauk SSSR,292, 582 (1987). · Zbl 0639.35069 · doi:10.1007/BF01017622
[15] M. J. Ablowitz, R. Beals, and K. Tenenblat,Stud. Appl. Math.,74, 177 (1986).
[16] N. Bourbaki,Elémentes de Mathematique. Groupes et Algébres de Lie, Chaps. VII, VIII, Hermann, Paris (1975).
[17] J. E. Humphreys,Linear Algebraic Groups, Springer, Berlin-Heidelberg-New York (1975). · Zbl 0325.20039
[18] L. Fehér, L. O’Raifeartaigh, P. Ruelle, I. Tsutsui, and A. Wipf,Phys. Rep.,222, 1 (1992). · doi:10.1016/0370-1573(92)90026-V
[19] S. Cecotti and C. Vafa,Commun. Math. Phys.,157, 139 (1993). · Zbl 0787.58008 · doi:10.1007/BF02098023
[20] V. E. Korepin, A. G. Izergin, and N. M. Bogoliubov,Quantum Inverse Scattering Method, Correlation Functions, and Algebraic Bethe Ansatz, Cambridge Univ., Cambridge (1993). · Zbl 0787.47006
[21] M. Sato, T. Miwa, and M. Jimbo, ”Aspects of holonomic quantum fields–isomonodromic deformation and the Ising model,” in:Lecture Notes in Physics, Vol. 126,Complex Analysis, Microlocal Calculus, and Relativistic Quantum Theory, Springer, Berlin-Heidelberg-New York (1980), pp. 429–491. · Zbl 0451.34008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.