×

Amenability and strong amenability for fusion algebras with applications to subfactor theory. (English) Zbl 0978.46043

Summary: The relationship between index theory and random walks on fusion algebras is discussed. Popa’s notion of amenability is reformulated as a property of fusion algebras, and several equivalent conditions of amenability are obtained. A ratio limit theorem is proved as a characterization of amenability. A number of conditions, all equivalent to Popa’s notion of strong amenability in the case of subfactors, of a pair of a fusion algebra and a probability measure are proposed, and their relationship is studied from the viewpoint of random walks and entropic densities. Fusion algebra homomorphisms and free products of fusion algebras are also discussed.

MSC:

46L60 Applications of selfadjoint operator algebras to physics
46L37 Subfactors and their classification
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Avez A., C. R. Acad. Sci. Paris Ser. A 275 pp 1363– (1972)
[2] Avez A., C. R. Acad. Sci. Paris Ser. A 276 pp 317– (1973)
[3] DOI: 10.1007/BF01405169 · Zbl 0261.22009
[4] DOI: 10.1016/0022-1236(92)90141-5 · Zbl 0829.46050
[5] DOI: 10.2140/pjm.1994.163.201 · Zbl 0814.46053
[6] Bisch D., RJ pp 16– (1997)
[7] Bisch D., Ann. Sci. Ecole Norm. Sup. Ser. 4 pp 29– (1996)
[8] DOI: 10.1007/s002220050137 · Zbl 0891.46035
[9] Carne T. K., Bull. Sci. Math. 109 (2) pp 399– (1985)
[10] DOI: 10.2307/2154484 · Zbl 0773.46032
[11] DOI: 10.2977/prims/1195169664 · Zbl 0765.46047
[12] Derriennic Y., C. R. Acad. Sci. Paris Ser. A 277 pp 613– (1973)
[13] Foguel S. R., Ann. Inst. H. Poincare Probab. Statist. 11 pp 199– (1975)
[14] Gebuhrer M. O., New York pp 131– (1992)
[15] DOI: 10.1007/BF01046933 · Zbl 0639.60072
[16] DOI: 10.1016/0001-8708(90)90078-2 · Zbl 0717.46054
[17] DOI: 10.1016/0022-1236(90)90074-U · Zbl 0751.46037
[18] DOI: 10.1006/jfan.1994.1070 · Zbl 0821.46075
[19] DOI: 10.1142/S0129167X93000054 · Zbl 0788.22005
[20] DOI: 10.2977/prims/1195174872 · Zbl 0679.46050
[21] Hiai F., Singapore pp 206– (1994)
[22] DOI: 10.1142/S0129167X95000122 · Zbl 0836.46054
[23] DOI: 10.2140/pjm.1997.177.237 · Zbl 0882.46028
[24] DOI: 10.2977/prims/1195169007 · Zbl 0765.46048
[25] Izumi M., Math. Scand. 73 pp 307– (1993) · Zbl 0808.46089
[26] Izumi M., Singapore pp 129– (1994)
[27] DOI: 10.1007/BF01389127 · Zbl 0508.46040
[28] Kaimanovich V. A., New York pp 145– (1992)
[29] DOI: 10.1007/BF02808195 · Zbl 0843.43001
[30] DOI: 10.1214/aop/1176993497 · Zbl 0641.60009
[31] DOI: 10.2977/prims/1195164051 · Zbl 0837.46046
[32] Kawakami S., Math. Japon. 33 pp 975– (1988)
[33] DOI: 10.2969/jmsj/04830427 · Zbl 0902.46041
[34] DOI: 10.1016/0022-1236(92)90118-3 · Zbl 0791.46040
[35] DOI: 10.1006/jfan.1996.0128 · Zbl 0923.46063
[36] DOI: 10.2140/pjm.1994.165.321 · Zbl 0810.46068
[37] DOI: 10.1007/BF02473354 · Zbl 0705.46038
[38] DOI: 10.1016/0022-1236(92)90013-9 · Zbl 0798.46047
[39] Ocneanu A., London Math. Soc. Lect. Note Ser. 136 pp 119– (1988)
[40] Pimsner M., Ann. Sci. Ecole Norm. Sup. Ser. 4 pp 19– (1986)
[41] Popa S., C. R. Acad. Sci. Paris Ser. I 309 pp 771– (1989)
[42] DOI: 10.1007/BF02392646 · Zbl 0853.46059
[43] DOI: 10.4310/MRL.1994.v1.n4.a2 · Zbl 0902.46042
[44] Popa S., Singapore pp 274– (1994)
[45] DOI: 10.1007/BF01241137 · Zbl 0831.46069
[46] Popa S., C. R. Acad. Sci. Paris Ser. I 315 pp 421– (1992)
[47] DOI: 10.1006/jfan.1996.0093 · Zbl 0896.46041
[48] DOI: 10.2140/pjm.1996.172.243 · Zbl 0851.46046
[49] Sano T., J. Operator Theory 32 pp 209– (1994)
[50] DOI: 10.2748/tmj/1178245011 · Zbl 0072.12501
[51] Th N., Bull. Sci. Math. 109 (2) pp 225– (1985)
[52] Wassermann A., London Math. Soc. Lect. Note Ser. 136 pp 203– (1988)
[53] DOI: 10.2977/prims/1195164950 · Zbl 0831.46070
[54] DOI: 10.2307/2154882 · Zbl 0820.46061
[55] DOI: 10.1112/blms/26.1.1 · Zbl 0830.60061
[56] DOI: 10.1142/S0129167X9300039X · Zbl 0793.46040
[57] DOI: 10.1007/BF02392105 · Zbl 0326.46032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.