zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Periodic instantons with non-trivial holonomy. (English) Zbl 0978.53512
Summary: We present the detailed derivation of the charge-1 periodic instantons - or calorons - with non-trivial holonomy for SU(2)2. We use a suitable combination of the Nahm transformation and ADHM techniques. Our results rely on our ability to compute explicitly the relevant Green’s function in terms of which the solution can be conveniently expressed. We also discuss the properties of the moduli space, $\bbfR^3\times\bbfS^1\times$ Taub-NUT/$\bbfZ_2$ and its metric, relating the holonomy to the Taub-NUT mass parameter. We comment on the monopole constituent description of these calorons, how to retrieve topological charge in the context of abelian projection and possible applications to QCD.

MSC:
53C80Applications of global differential geometry to physics
81T13Yang-Mills and other gauge theories
53C07Special connections and metrics on vector bundles (Hermite-Einstein-Yang-Mills)
53C29Issues of holonomy
WorldCat.org
Full Text: DOI
References:
[1] Atiyah, M. F.; Hitchin, N. J.; Drinfeld, V. G.; Manin, Yu.I.: Phys. lett.. 65 A, 185 (1978)
[2] Prasad, M. K.; Sommerfield, C. M.: Phys. rev. Lett.. 35, 760 (1975)
[3] Manton, N. S.: Nucl. phys. B. 126, 525 (1977)
[4] Montonen, C.; Olive, D.: Phys. lett. B. 72, 117 (1977)
[5] Garland, H.; Murray, M. K.: Commun. math. Phys.. 120, 335 (1988)
[6] Lee, K.; Yi, P.: Phys. rev. D. 56, 3711 (1997)
[7] Nahm, W.: Self-dual monopoles and calorons. Lecture notes in physics 201, 189 (1984) · Zbl 0573.32030
[8] Kraan, T. C.; Van Baal, P.: Exact T-duality between calorons and taub-NUT spaces. Phys. lett. B 428, 268 (1998)
[9] Taubes, C.: Morse theory and monopoles: topology in long-range forces. Progress in gauge field theory, 563 (1984)
[10] Lee, K.; Lu, C.: $SU(2)$ calorons and magnetic monopoles. Phys. rev. D 58, 25011 (1998)
[11] Harrington, B. J.; Shepard, H. K.: Phys. rev. D. 18, 2990 (1978)
[12] Gross, D. J.; Pisarski, R. D.; Yaffe, L. G.: Rev. mod. Phys.. 53, 43 (1983)
[13] Van Baal, P.: Twisted boundary conditions: a non-perturbative probe for pure non-abelian gauge theories. Ph.d. thesis (July 1984)
[14] Nahm, W.: Phys. lett. B. 90, 413 (1980)
[15] Nahm, W.: The construction of all self-dual multimonopoles by the ADHM method. Monopoles in quantum field theory, 87 (1982)
[16] Hooft, G. ’t: Physica scripta. 25, 133 (1982)
[17] Braam, P. J.; Van Baal, P.: Commun. math. Phys.. 122, 267 (1989)
[18] Van Baal, P.: Nucl. phys. B (Proc. Suppl.). 49, 238 (1996)
[19] Donaldson, S. K.; Kronheimer, P. B.: The geometry of four-manifolds. (1990) · Zbl 0820.57002
[20] Atiyah, M. F.; Singer, I. M.: Ann. math.. 93, 119 (1971)
[21] Bott, R.; Seeley, R.: Commun. math. Phys.. 62, 235 (1978)
[22] Hooft, G. ’t: Phys. rev. D. 14, 3432 (1976)
[23] Corrigan, E.; Goddard, P.: Ann. phys. (N.Y.). 154, 253 (1984)
[24] Hurtubise, J.; Murray, M. K.: Commun. math. Phys.. 122, 35 (1989)
[25] Nakajima, H.: Monopoles and Nahm’s equations. Einstein metrics and Yang-Mills connections, Sanda, 1990 (1993) · Zbl 0788.53068
[26] Atiyah, M. F.: Geometry of Yang-Mills fields. Fermi lectures (1979) · Zbl 0435.58001
[27] Corrigan, E. F.; Fairlie, D. B.; Templeton, S.; Goddard, P.: Nucl. phys. B. 140, 31 (1978)
[28] Rajaraman, R.: Solitons and instantons. (1982) · Zbl 0493.35074
[29] Osborn, H.: Nucl. phys. B. 159, 497 (1979)
[30] Kraan, T. C.: Nahm’s transformation and instantons on R3 ${\times}$ S1. Poster presented at the 2nd DRSTP symposium (5--6 June, 1997)
[31] Whitakker, E. T.; Watson, G. N.: A course in modern analysis. 169 (1927)
[32] Rossi, P.: Nucl. phys. B. 149, 170 (1979)
[33] Atiyah, M. F.; Hitchin, N. J.: The geometry and dynamics of magnetic monopoles. (1988) · Zbl 0671.53001
[34] Newman, E. T.; Unti, T.; Tamburino, L.: J. math. Phys.. 4, 915 (1963)
[35] Hawking, S.: S.hawkingw.israel general relativity, an Einstein centenary survey. General relativity, an Einstein centenary survey, 774 (1979) · Zbl 0424.53001
[36] Hawking, S.: Phys. lett. A. 60, 81 (1977)
[37] Gibbons, G. W.; Pope, C. N.: Commun. math. Phys.. 66, 267 (1979)
[38] Hitchin, N. J.; Karlhede, A.; Lindström, U.; Roc\ddot{}ek, M.: Commun. math. Phys.. 108, 535 (1987)
[39] J.P. Gauntlett and J.A. Harvey, S-duality and the spectrum of magnetic monopoles in heterotic string theory, hep-th/9407111.
[40] Gross, D.; Perry, M.: Nucl. phys. B. 226, 29 (1983)
[41] Gibbons, G. W.; Manton, N. S.: Nucl. phys. B. 274, 183 (1986)
[42] Manton, N. S.: Phys. lett. B. 157, 475 (1985)
[43] Connell, S. A.: The dynamics of the $SU(3)$ charge (1,1) magnetic monopole. (1991)
[44] Lee, K.; Weinberg, E. J.; Yi, P.: Phys. lett. B. 376, 97 (1996)
[45] K. Lee and P. Yi, Dyons in N=4 supersymmetric theories and three-pronged strings, hep-th/9804174.
[46] Taubes, C. H.: J. diff. Geom.. 19, 517 (1984)
[47] Taubes, C. H.: Commun. math. Phys.. 86, 299 (1982)
[48] Polyakov, A. M.: JETP lett.. 20, 194 (1974)
[49] Julia, B.; Zee, A.: Phys. rev. D. 11, 2227 (1975)
[50] Witten, E.: Phys. lett. B. 86, 283 (1979)
[51] Manton, N. S.: Phys. lett. B. 110, 54 (1982)
[52] Mandelstam, S.: Phys. rep. C. 23, 245 (1976)
[53] Schäfer, T.; Shuryak, E.: Rev. mod. Phys.. 70, 323 (1998)
[54] Smit, J.; Van Der Sijs, A.: Nucl. phys. B. 355, 603 (1991)
[55] Kronfeld, A. S.; Schierholz, G.; Wiese, U. J.: Nucl. phys. B. 293, 461 (1987)
[56] Polikarpov, M.: Nucl. phys. B (Proc. Suppl.). 53, 134 (1997)
[57] Brower, R. C.; Orginos, K. N.; Tan, Ch.-I.: Phys. rev. D. 55, 6313 (1997)
[58] Van Baal, P.: Nucl. phys. B (Proc. Suppl.). 63A-C, 126 (1998)
[59] Pérez, M. García; González-Arroyo, A.; Snippe, J.; Van Baal, P.: Nucl. phys. B. 413, 535 (1994)
[60] Laursen, M. L.; Schierholz, G.: Z. phys. C. 38, 501 (1988)
[61] Kraan, T. C.; Van Baal, P.: Monopole constituents inside $SU(n)$ calorons. Phys. lett. B 435, 389 (1998)
[62] T.C. Kraan and P. van Baal, Constituent monopoles without gauge fixing, hep-lat/9808015. · Zbl 1051.81566